

Information

DTsch 151-80, DTsch 151-100 DTsch 161-125, DTsch 161-160 DTsch 171-250, DTsch 171-320

2/87 (11)

Herstellerland: UdSSR

Übersetzung, bearb.

Schnellsperrende Dioden

Allgemeine Angaben

Die schnellsperrenden Dioden (im weiteren schnelle Dioden genannt) mit hoher Belastbarkeit sind vorgesehen für den Einsatz in statischen Stromrichtern sowie in anderen Gleich- und Wechselstromkreisen verschiedenster leistungselektronischer Anlagen, in denen vor allem kleine Sperrerholungszeiten und kleine Sperrerholladungen erforderlich sind.

Grenzwerte klimatischer Einwirkungen

Die Dioden lassen den Betrieb bei Umgebungstemperaturen von -60 °C bis +40 °C, bei einem Luftdruck von 86-106 kN/m² und relativer Luftfeuchte von 98 % bei 35 °C zu. Klimaausführung U (Y), ChL (X \mathcal{A}) und T, Einsatzkategorie 2. Die Dioden sind vorgesehen für den Betrieb in explosionssicherer und chemisch inaktiver Umgebung unter Bedingungen, die die Einwirkung verschiedenster Strahlungen (Neutronen-, Elektronen-, γ -Strahlung usw.) ausschließt.

Grenzwerte mechanischer Einwirkungen

Die Dioden lassen die Einwirkung sinusförmiger Schwingungen im Frequenzbereich 1-100 Hz mit Beschleunigungen von 5 g und einzelner Stöße bei Impulsdauer von 50 ms mit Beschleunigungen von 4 g zu.

Technische Daten

Haupt- und Anschlußmaße der Dioden ohne Kühlkörper sind im Bild 1, die Haupt- und Anschlußmaße der Dioden mit Kühlkörper sind im Bild 2 dargestellt.

Die Grenzwerte der Dioden sind in der Tabelle 1, die Kennwerte in derTabelle 2 und in den Bildern 3, 4, 5, 8, 11 ... 18, die Grenzwerte und Kennwerte mit den empfohlenen Kühlkörpern in der Tabelle 3 und in den Bildern 6, 7, 9, 10 und 19 zusammengestellt.

Anmerkung: Kühlkörper für leistungselektronische Bauelemente in Bolzenausführung werden nicht importiert. Der Bedarf wird aus DDR-Eigenaufkommen abgedeckt. Bestellungen sind zu richten an den VEB Mikroelektronik "Karl Liebknecht" Stahnsdorf, 1533 Stahnsdorf, Ruhlsdorfer Weg, Abt. Verkauf

Bild 1: Haupt- und Anschlußmaße der Dioden, Spannungsmeßpunkte am Gehäuseboden und an der Hülse des Katodenanschlusses

Hauptabmessungen

	DTsch 151-80 DTsch 151-100	DTsch 161-125 DTsch 161-160	DTsch 171-250 DTsch 171-320
ØD	^{30,5} - 0,62	35,5 - 0,62	45,5 - 0,62
E	27 - 0,52	³² - 0,62	41 - 0,62
I	max. 66	max. 82	max. 85
м	18 ± 0,05	22 ± 0,5	24 ± 1
N	¹⁸ - 0,43	13 - 0,43	¹⁹ - 0,52 [.]
. 0	150 ± 10	200 ± 10	250 ± 10
Фт	8,4 + 0,36	10,5 + 0,43	12,5 + 0,43
W	M12 ,	M16 x 1,5	M24 x 1,5

t,

Bild 2a

Bild 2b

Bild 2c

Bild 2: Haupt- und Anschlußmaße der Dioden mit empfohlenem Kühlkörper a) DTsch 151-80, DTsch 151-100 mit OA-004

- b) DIsch 161-125, DIsch 161-160 mit 0A-051
- c) DTsch 171-250, DTsch 171-320 mit 0A-019

Tabelle 1: Grenzwerte der Dioden

.

15

*

÷

Kurzzeich	nen Kenngröße	Wer								
		D Tsch 151-80	DTsch 151-100	DTsch 161-125	DTsch 161-160	DTsch 171-250	DTsch 171-320	Meßbedingung	en	
U _{RRM}	Periodische Spitzensperr- spannung für Klasse 5 6 7 8 9 10 11 12			500 600 700 800 900 1000 1100 1200				T _j = -60 140 °C Spannungsverlauf: sinusförmige Halbwellen t _p = 10 ms, f = 50 Hz		
U _{RSM}	Nichtperio- dische Spitzen- sperrspan- nung	1,1 1	U _{RRM}		•			T _j =-60 Spennungsver sinusförmige t _p = 10 ms, f - Einzelim	140 °C, lauf: Halbwelle, pulse	
I _{F(AV)}	Mittlerer Durchlaß- strom	80 A	100 🛦	125 A	160 A	- 250 A	320 A	$T_{c} = 100 ^{\circ}C,$ lauf: sinusf wellen, Stro $\theta = 180 ^{\circ}C,$	Stromver- örmige Halb mflußwinkel f = 50 Hz	
IF(RMS)	Efféktiver Durchlaß- strom	126 A	157 A	196 A	251 A	393 A	502 A _	f = 50 Hz		
IPSM	Stoß- strom	2,4 kA	2,7 kA	4,5 kA	5,0 kA	8,0 kA	9,0 kA	T _j = 140 °C		
		2,7 kA	3,0 kA	5,0 kA	5,5 kA	8,8 kA	10,0 kA	T _j = 25 °C	t _n = 10 m	
1 ² at	Stoßstrom-	28,8.10 ³ A ² s	36,4.10 ³ A ² s	101 . 10 ³ A ² s	125.10 ³ 4 ² 8	320 ·10 ³ A ² s	405.10 ³ A ² 8	$T_1 = 140 ^{\circ}C$	U _R = ov	
	integral	36,4.10 ³ A ² s	45.10 ³ A ² s	125.10 ³ A ² s	151.10 ³ A ² s	387.10 ³ A ² s	500.10 ³ A ² s	$T_j = 25 °C$		
T _{stgmax} T _{stgmin}	Lagerungs- temperatur Maximalwert Minimalwert	+140 %C _60 %C								

.

1255

DTach 151-80, ...

2/87 (11)

5

.

Fortsetzung B-1-11. 4.

Kurzseichen	Kenngröße	Wert für Typ											
		DTsch	151-80	DTsch	151-100	Dīsch	161-125	DTsch	161-160	Disch	171-250	DTsch 171-320	Meßbedingungen
T _{jm} T _{jmin}	Sperr- schichttem- peratur Maximalwert Minimalwert		+140 % ·										
	Anzugsdreh- moment		15 <u>+</u> 2	0 % Nm		23	30 <u>+</u> 2	20 % Nm			50 <u>±</u> 2	20 % Nm	
· · ·	Zugkraft am Katoden- anschluß		ŧ	O N			12	20 N .		8	1	50 N	

¥0. 15

Ŷ

152

Tabelle 2:

Kennwerte der Dioden

302

1	The second s	Wert	für Typ	0.000 Mar = 0.00 Selection States			estatement (10	
Kurszeichen	Kenngröße	DTsch 151-80	DTsch 151-100	DTsch 161-125	Disch 161-160	DTsch 171-250	DTsch 171-320	Meßbedingungen	
U _{PM}	Spitzen- durchlaß- spennung	\$ 1,85 ¥.	\$1,55 V	\$ 1,80 V	≤1,45 V	\$ 2,10 ¥	* ≦1,65 V	$T_{j} = 25 °C,$ $I_{p} = 3.14 I_{F(AV)}$ Spannungsmeßpunkte: s. Bild 1	
^U (TO)	Schleusen-	€1,2 V	\$1,06 V	≦ 1,20 V	≨1,05 V ·	\$1,20 7	\$1,05 V	T _{jm} = 140 [°] C	
r _T	Durchlaßersatz widerstand	- 13,3 mΩ	≤1,7 mΩ	≤1,87 mΩ	≤0,86 mΩ	·¥1,3 mΩ	≦0,65 mΩ	T _{jm} = 140 ^o C	
I _{RRM}	periodischer Spitzensperr- strom		≨25 m A		60 mA -	56	ioma.	$T_{jm} = .140 \ ^{\circ}C$ $U_R = U_{RRM}$	
I _{rrN}	Spitzenwert des Sperr- erholstroms	5 100 A		51	40 A	≤ 14	A 0	$T_{jm} = 140 \ ^{\circ}C, I_F = I_F(AV),$ $di_p/dt = -50A/us,$ $U = 100 \ V = 200 \ US$	
9 _{rr}	Sperrerhol- ladung		\$140 Juc	≦2	00 /uC /	≦ 20	o Jnc	- 0R = 100 V, Cp = 200/us	

Fortsetzung

Tabelle 2:

•

1

Kennwerte der Dioden

		Wert für Typ									4
Kurzzeichen	Kenngröße	DTsch 151-80	DTsch 151-100	DTsch 161	-125 DTuch	161-160	DTsch	171-250	DTsch 1	71-320	Meßbedingungen
'rr	Sperr- erholungs- zeit für Gruppe 6 5 4 3	11.6 #2.5 #2.5) /us) /us j /us		12,0 /us 12,5 /us 13,2 /us	20		₹2,5 ₹3,2	/us		
thjo	Innerer Wärmewider- stand	≇0,	27 K/W		≦0,18 K/W			≇0,0	8 K/W		Gleichstrom .
-	Masse	\$0,	18 kg		≦0,29 kg			40,5	1 kg		

23

Tabelle 3: Grenz- und Kennwerte der Dioden mit empfohlenem Kühlkörper

		1	Wert	für Typ mit	Kühlkörper		1	N
Kurzzeichen	Kenngröße	DTsch 151-80 DTsch 151-100 OA - 004		DTsch 161-125 OA -	DTsch 161-160 051	DTsch 171-250 OA -	DTsch 171-320 019	Meßbedingungen
IF(AV)	Grenzwert	30 A	. 36 A	51 A	58 A	81 A	102 A	natürliche Kühlung
	ren Durch- laßstroms	59 A	73 A	100 A	126 A	, 167 A	202 A	Kühlluftgeschwindig- keit V = 6 m/s $T_a = 40 \ ^{\circ}C$ Stromverlauf: sinusför- mige Halbwellen Stromflußwinkel $\theta = 180^{\circ}$ f = 50 Hz
R _{thoh}	Montagewärme- widerstand		\$0,2 K/W	\$0,07 K/W		≤0,05 K/W		
^R thja	Gesamtwärme- widerstand		≸2,29 K/W		≤1,35 K/W		≤0,81 K/W	natürliche Kühlung P _{F(AV)} = 130 W (Gleich- strom)
1			≤1,11 K/W ·		≤0,6 K/W	1	10,86 K/W	V = 6 m/s Fleichstrom
	Masse		\$0,60 kg		\$1,09 kg		≤2,26 kg	

DTsch 151-80,

2/87 (11)

Bild 3a

Bild 3b

Bild 3c

Bild 3d

Bild 3e

Bild 3f

Bild 3:	Maximalwerte der	Durchlaßkennlinie bei Sperrschich						
	temperatur 25 °C	(1) und 140 °C	(2)					
	a) DTsch 151-80	b) DTsch	151-100					
	c) DTsch 161-125	d) DTsch	161-160					
	e) DTsch 171-250	f) DTsch	171-320					

15

Bild 4b

Bild 4c

Bild 4d

Bild 4e

Bild 4f

Bild 4: Abhängigkeit des Grenzwertes des mittleren Durchlaßstroms I_{F(AV)} von der Gehäusetemperatur T_c bei verschiedenen Stromflußwinkeln für sinusförmigen Strom, f = 50 Hz b) DTsch 151-100 a) DTsch 151-80 d) DTsch 161-160 c) DTsch 161-125

e) DTsch 171-250

- f) DTsch 171-320

2/87 (11)

Bild 5a

Bild 5b

Bild 5c

.

...

Bild 5e

Bild 5f

- a) DTsch 151-80
- c) DTsch 161-125
- e) DTsch 171-250

- b) DIsch 151-100
- d) DTsch 161-160
- f) DTsch 171-320

Bild 6a

Bild 6b

Bild 6d

Bild 6c

Bild 6e

Bild 6f

Bild 6: Abhängigkeit des Grenzwertes des mittleren Durchlaßstroms $I_{F(AV)}$ von der Umgebungstemperatur T_a bei Kühlluftgeschwindigkeit v = 0 m/s bei verschiedenen Stromflußwinkeln für sinusförmigen Strom, f = 50 Hz

- a) DTsch 151-80 mit Kühlkörper OA 004
- b) DTsch 151-100 mit Kühlkörper OA 004
- c) DTsch 161-125 mit Kühlkörper OA 051
- d) DTsch 161-160 mit Kühlkörper OA 051
- e) DTsch 171-250 mit Kühlkörper OA 019
- f) DTsch 171-320 mit Kühlkörper OA 019

Bild 7a

Bild 7b

F(AV) Gleichstrom FAN 60 40 180 120 90 20 60 ° 300 0 Ta/ Cº 40 60 80 100 120

Bild 7c

Bild 7d

14

Bild 7e

Bild 7f

Bild 7: Abhängigkeit des Grenzwertes des mittleren Durchlaßstroms I_{F(AV)} von der Umgebungstemperatur T_a bei Kühlluftgeschwindigkeit v = 0 m/s bei verschiedenen Stromflußwinkeln für rechteckförmigen und Gleichstrom, f = 50 Hz
a) DTsch 151-80 mit Kühlkörper OA-004
b) DTsch 151-100 mit Kühlkörper OA-004
c) DTsch 161-125 mit Kühlkörper OA-051
d) DTsch 161-160 mit Kühlkörper OA-051
e) DTsch 171-250 mit Kühlkörper OA-019
f) DTsch 171-320 mit Kühlkörper OA-019

Bild 8f

DTscn 151-80, .

6

2

4

6 tp/s

tp/s

6

6 tp/s

4

4

Bild 81

Bild 8h

16

Bild 8j

Bild 81

Bild 8m

Bild 80

Bild 8n

17

Bild 8p

Bild 8: Sinusförmiger Durchlaßstrom I_{FM} bei erhöhten Frequenzen und den Gehäusetemperaturen $(U_R = 0,67 U_{RRM})$ $T_c = 80 °C a) DTsch 151-80 b) DTsch 151-100$ $T_c = 100 °C c) DTsch 151-80 d) DTsch 151-100$ $T_c = 120 °C e) DTsch 151-80 f) DTsch 151-100$ $T_c = 80 °C g) DTsch 161-125 h) DTsch 161-160$ $T_c = 100 °C i) DTsch 161-125 j) DTsch 161-160$ $T_c = 120 °C k) DTsch 161-125 l) DTsch 161-160$ $T_c = 80 °C m) DTsch 161-125 l) DTsch 161-160$ $T_c = 100 °C c) DTsch 171-250 n) DTsch 171-320$ $T_c = 100 °C o) DTsch 171-250 p) DTsch 171-320$ $T_c = 120 °C q) DTsch 171-250 r) DTsch 171-320$ $T_c = 120 °C q) DTsch 171-250 r) DTsch 171-320$ $T_c = 120 °C q) DTsch 171-250 r) DTsch 171-320$

Bild 9a

10² 8 6

4

8 104

tp/s

Bild 9c

2/87 (11)

Bild 9e

Bild 9f

Bild 9: Sinusförmiger Durchlaßstrom I_{FM} bei Kühllufttemperatur 50 °C und Kühlluftgeschwindigkeit v = 0 m/s, U_R = 0,67 U_{RR} a) DTsch 151-80 mit Kühlkörper OA-004 b) DTsch 151-100 mit Kühlkörper OA-004 c) DTsch 161-125 mit Kühlkörper OA-051 d) DTsch 161-160 mit Kühlkörper OA-051 e) DTsch 171-250 mit Kühlkörper OA-019 f) DTsch 171-320 mit Kühlkörper OA-019 1 - f = 630 Hz; 2 - f = 1000 Hz; 3 - f = 1600 Hz; 4 - f = 2500 Hz; 5 - f = 4000 Hz; 6 - f = 6300 Hz; 7 - f = 10000 Hz; 8 - f = 16000 Hz

Bild 10b

Bild 10a

Bild 10e

Bild 10: Abhängigkeit des Maximalwertes des Überstroms $I_{F(OV)}$ von der Belastungsdauer t bei Kühllufttemperatur 50 °C und Kühlluftgeschwindigkeit v = 6 m/s. Verhältnis des vorhergehenden Stroms zum Maximalwert K = 0 (1), K = 0,5 (2), K = 0,75 (3), K = 1 (4), f = 50 Hz a) DTsch 151-80 mit Kühlkörper OA-004

b) DTsch 151-100 mit Kühlkörper 0A-004

c) DTsch 161-125 mit Kühlkörper OA-051

d) DTsch 161-160 mit Kühlkörper OA-051

e) DTsch 171-250 mit Kühlkörper OA-019

f) DTsch 171-320 mit Kühlkörper 0A-019

Bild 11a

Bild 11c

- Bild 11f

Bild 11: Abhängigkeit des Stoßstroms I_{FSM} von der Impulslänge t_p bei Ausgangstemperatur der Sperrschicht 25 °C (1),

- 140 °C (2), $U_R = 0 V$ a) DTsch 151-80
- c) DTsch 161-125
- e) DTsch 171-250

Bild 12a

Bild 12c

- b) DTsch 151-100
 d) DTsch 161-160
- f) DTsch 171-320

Bild 12b

Bild 12d

Bild 12f

2/87 (11)

Bild 12: Abhängigkeit des Stoßstroms I_{FSM} von der Impulslänge t_p bei Ausgangstemperatur der Sperrschicht 25 °C (1), 140 °C (2), $U_R = 0.8 U_{RRM}$, f = 50 Hz a) DTsch 151-80 b) DTsch 151-100 c) DTsch 161-125 d) DTsch 161-160 e) DTsch 171-250 f) DTsch 171-320

Hinweis der Redaktion

Weitere Kennlinien für diese leistungselektronischen Bauelemente erscheinen in der Datenblattsammlung "Elektronische Bauelemente", Ausgabe 1/88 (12).

Literatur

/1/ Diody bystrovosstanavlivajusciesja tipov DTsch 151-80, DTsch 151-100, DTsch 161-125, DTsch 161-160, DTsch 171-250, Dtsch 171-320 (Schnelle Dioden DTsch 151-80, DTsch 151-100, DTsch 161-125, DTsch 161-160, DTsch 171-250, DTsch 171-320)