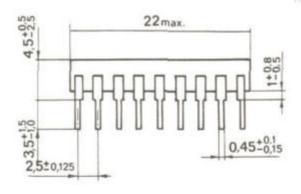
mikreektronik

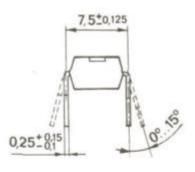
Information

B 391 D

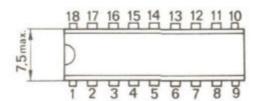
Motorprozessor für Kassettenlaufwerke

Vorläufige technische Daten


Gehäuse:

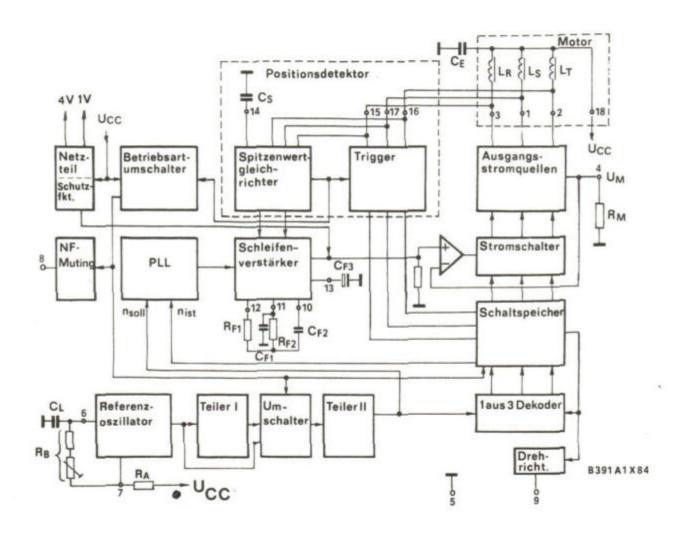

18poliges DIL-Plastgehäuse

Bauform:


21.2.1.2.18

Integrationsgrad: IG 3

21.1.1.2.18 TGL 26713



Anschlußbelegung:

- 1 Ausgang-Spulensystem S
- 2 Ausgang-Spulensystem T
- 3 Ausgang-Spulensystem R
- 4 Ausgangsstrombegrenzung
- 5 Masse
- 6 Sensoreingang-Oszillator
- 7 Entladeausgang-Oszillator
- 8 NF-Muting; Kontrollpin für Istdrehzahl
- 9 Drehrichtungsvorwahl

- 10 Ausgang-Schleifenverstärker
- 11 Eingang-Schleifenverstärker
- 12 Ausgang-dynamische Regelspannung
- 13 Ausgang-statische Regelspannung
- 14 Ausgang invertierte Tachospannung
- 15 Triggereingang R
- 16 Triggereingang T
- 17 Triggereingang S
- 18 Betriebsspannung Ucc

Blockschaltbild:

Funktionsbeschreibung:

Der B 391 D stellt die komplette mikroelektronische Komponente von Elektronikmotorkonzepten für Kassettenlaufwerke der neuen Generation Radiorecorder oder ähnliche Anwendungen dar. Durch den großen Betriebsspannungsbereich (6–20 V) werden die Elektronikmotore universell einsetzbar.

Der B 391 D stellt eine Eigenentwicklung dar. Seine Funktionen beinhalten in der Hauptsache das Anlaufen, den Selbstlauf, die analoge und digitale Drehzahlregelung und die Abkommutierung der Spuleninduktivitäten von kommutatorlosen Motoren. Das Kurz- und Langzeitverhalten der Drehzahl in Abhängigkeit von Temperatur und Betriebsspannung wird im wesentlichen durch die Genauigkeit des integrierten Referenzoszillators und seiner frequenzbestimmenden passiven Komponenten bestimmt. Durch den Referenzoszillator und nachfolgende Teilerketten wird in der Anlaufphase ein Taktregime erzeugt, das

- 1. das Rücksetzen aller Logikteile in den Grundzustand veranlaßt,
- 2. den Rotor und den Stator definiert positioniert,
- den Rotor in Anlaufrichtung (durch entsprechende Pinbeschaltung wählbar) beschleunigt,
- bei genügend hoher induzierter Motor-EMK (>150 mV) in die Betriebsart "Selbstlauf" umschaltet.

In der Anlauf- und Selbstlaufphase erfolgt die Beschleunigung der Motordrehzahl mit maximaler Energie, so daß in sehr kurzer Zeit die Nenndrehzahl erreicht ist.

Bis zu diesem Zeitpunkt besteht die Möglichkeit, über einen IS-Anschluß das NF-Signal im Verstärkertrakt zu unterdrücken. Bei Erreichen der Nenndrehzahl erfolgt über die Stromregelung des Motors die Drehzahlkorrektur. Das dazu benötigte Signal wird durch digitalen Vergleich der Ist- mit der Solldrehzahl in einer PLL und durch Überlagerung mit der induzierten Tachospannung gebildet. Ohne Gleichlauffehler ist die Motordrehzahl phasenstarr mit der Referenzfrequenz verkoppelt.

Gleichlauffehler führen zur Phasenmodulation, die durch einen hohen Verstärkungsfaktor dem Fehler entgegenwirkt.

Mehrere integrierte Schutzfunktionen sorgen für eine hohe Lebensdauer der Elektronikmotoren.

Grenzwerte:

	min.		max.		
Betriebsspannung	Ucc	6	20	V	
Tachospannung	U _T		U _{cci} 27 V – U _{cc} ¹)		
Endstufenstrom t ≤ 10 s	I _{1,2,3}		400	mA	
Dauerendstufenstrom	I _{1,2,3}		250	mA	
Oszillator-Entladestrom	17		20	mA	
Filterwiderstand	R ₁₁₋₁₂	19,2	28,8	$k\Omega$	
Referenzfrequenz	f ₇		100	kHz	
Spannung am Drehrichtungseingang	U _{9L}	0	$0,3^2$)	mV	
Strom am Drehrichtungseingang	I _{9H}	-	10	μΑ	
Muting-Ausgangsspannung	U _{8H}		27	V	
Muting-Ausgangsstrom	I _{8L}	-	1	mA	
Reststrom Pin 8	I _{R8}	_	250	nA	
Oszillator-Sensoreingangsspannung	U ₆	0	Ucc	V	
Verstärkerausgangsstrom	I ₁₀	-150	+ 150	μΑ	
Verstärkereingangsspannung	U _{12,13}	0	4	V	
Strom am invert. Tachospannungsausgang	114	0	1	mA	
Betriebstemperatur	ϑ _a	-10	70	°C	
Gesamtverlustleistung	P _{tot}	_	750	mW	

¹⁾ U_T wird gegen U_{CC} gemessen

²) Bei Überschreitung ist Funktion nicht gewährleistet

Hauptkenngrößen (U_{CC} = U₁₄ = 15 V; U_{1,2,3} = 6 V, U_{15,16,17} = 16 V; R₇ = 56 kΩ; R₈ = 7,5 kΩ; C₅ = 330 pF; R₉ = 24 kΩ; R₆ = 10 Ω; falls nicht anders angegeben und bei ϑ_a = 25 °C – 5 K):

		min.	max.	
Stromaufnahme $U_{CC} = U_{14} = 6 \text{ V}$ Oszillator ein $U_{15,16,17} = 9 \text{ V}$	I _{cc}		18	mA
Ausgangsspannung der Endstufentransistoren in der Betriebsart: Anlauf $L_{1,2,3}=100 \text{ mA}$; Oszillator gestoppt; Pin 4 auf Masse $I_{1,2,3}=350 \text{ mA}$; Oszillator gestoppt;	U ₁ U ₂		0,6	v v
Pin 4 auf Masse Eingangsleitwert der Gleichrichtung $U_{15,16,17} = 22 \text{ V}$ $\left(G_{15,16,17} = \frac{J'_{15,16,17} - L_{15,16,17}}{U'_{15,16,17} - U_{15,16,17}}\right)$ $U_4 = 1,5 \text{ V}$ Pin 6 mit Masse verbunden	G ₁₅ G ₁₆ G ₁₇	0,15	0,3	mS

Nebenkenngrößen (U_{CC} = U₁₄ = 15 V; U_{1,2,3} = 6 V; U_{15,16,17} = 16 V; R₈ = 7,5 kΩ; C₅ = 330 pF; R₉ = 24 kΩ; R₆ = 10 Ω; falls nicht anders angegeben und bei ϑ_a = 25 °C – 5 K)

		min.	max.	
NF-Ausgangsstrom LOW $I_8 = 0.5 \text{ mA}$ Betriebsart: Anlauf $U_4 = 1.5 \text{ V}$ Pin 6 mit Masse verbunden	U ₈		250	mV
Oszillatorentladeausgangsspannung LOW $I_7 = 10$ mA; $U_6 = 12$ V; $U_4 = 1,5$ V	U ₇		200	mV
Oszillator-Sensoreingangsstrom $U_6 = 3 \text{ V}$; $U_4 = 1,5 \text{ V}$ $U_6 = 7,5 \text{ V}$; $U_4 = 1,5 \text{ V}$	I ₆		0,10 2,5	μ Α μ Α
Transformierte Tachospannung $U_{15,16,17} = U_{CC}$; $U_4 = 1,5 \text{ V}$ $U_{15,16,17} = 20 \text{ V}$; $U_4 = 1,5 \text{ V}$	U ₁₄	14,6 10,7	- 11,8	V V
Spannungsabhängigkeit der Oszillatorfreque	$\frac{f_7 - f_7}{4 f_7}$	-	500	ppm/V
f'_7 gemessen bei $U_{CC} = 6 \text{ V}$ f_7 gemessen bei $U_{CC} = 10 \text{ V}$ $U_4 = 1,5 \text{ V}$				
Temperaturabhängigkeit der Oszillatorfreque	enz TK _{osz}	-150	0	ppm/k
Einsatzspannung der Endstufenstrombegrenzung $U_{CC} = U_{14} = 6 \text{ V}$ Oszillator ein	U ₄	0,9	1,1	V

veb halbleiterwerk frankfurt/oder betrieb im veb kombinat mikroelektronik DDR 1200 Frankfurt/Oder - Telefon 4 60 elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie