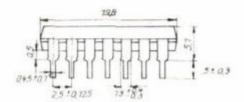
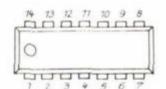
mikroelektronik

Information




B 654 D Vorläufige technische Daten

Monolithisch integrierter Schaltkreis, vorzugsweise für den Einsatz in elektronisch gesteuerten Rudermaschinen vorgesehen.

Der Schaltkreis mit integrierter Brückenschaltung dient der digital-proportionalen Verarbeitung der in elektrische Signale umgewandelten Führungsgröße zur Ansteuerung von Kleinst- Elektromotoren in einer Abtast-Regelschaltung.

Ahmessungen in mm und Anschlußbelegung:

- 1 -Eingangdes Impedanzwandlers
- 2 Ausgang des Impedanzwandlers
- 3 Eingang für Führungsimpuls
- 4 Betriebsspannung U S+
- 5 Ausgang des monostabilen Multivibrators
- 6 Eingang des monostabilen Multivibrators
- 7 Anschluß für externe Totzeiterzeugung
- 8 Anschluß zur Einstellung der Impulsdehnung (Regelverstärkung)
- 9 nicht belegt
- 10 Ausgang der Brückenschaltung
- 11 Betriebsspannung US-(Masse)
- 12 Ausgang der Brückenschaltung
- 13 nicht belegt
- 14 Anschluß zur Einstellung der Impulsdehnung (Regelverstärkung)

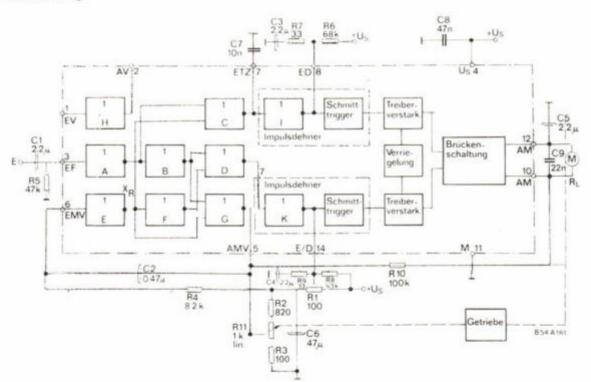
Gehäuse : DIL-Plastgehäuse

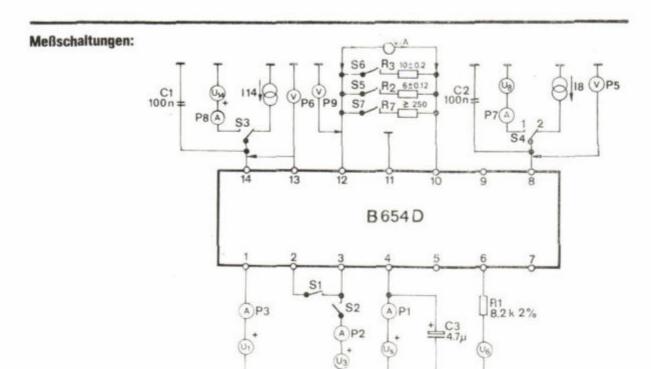
Bauform: 21.2.1.2.14 nach TGL 26 713

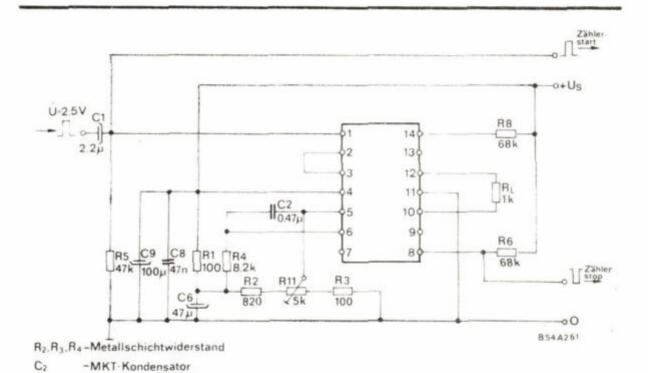
Masse : ≤ 1,5 g

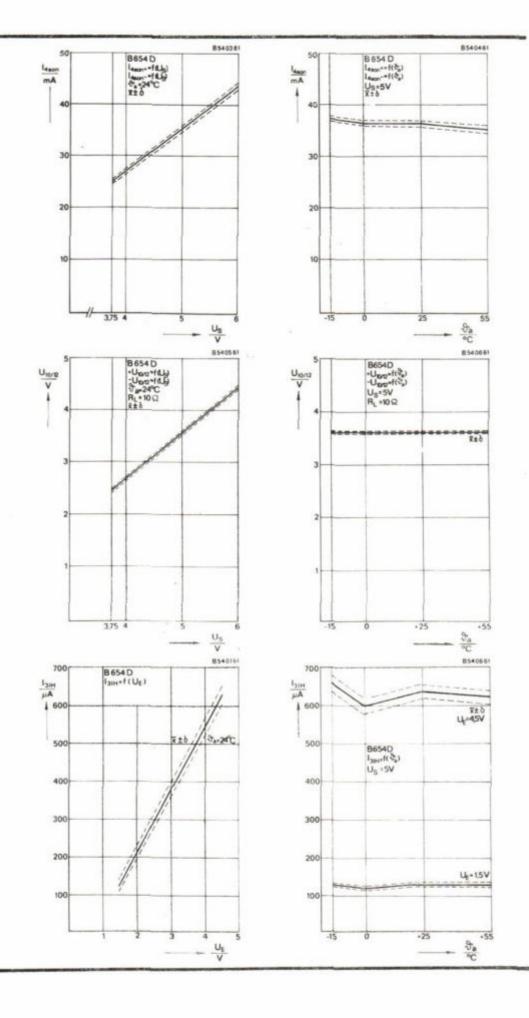
Typenstandard: TGL 38 008

Internationaler Vergleichstyp: SN 28654

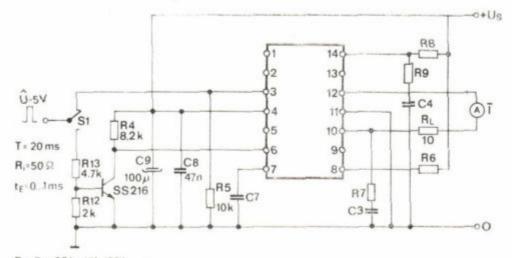

Grenzwerte, gültig für den Betriebstemperaturbereich

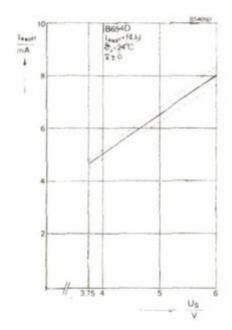

		min.		max.	
Betriebsspannung	U 4/11	3.8		7,0	V
Eingangsspannung	U 3/11	-5,0		7,0	V
Eingangssperrspannung	-U 6/11	0		5,0	V
Ausgangsstrom des monostabilen	Or 11				
Multivibrators	15			4,0	mA
Ausgangsstrom des Impedanzwandlers	12			1,0	mA
Ausgangsstrom	18			20	mA
Ausgangsstrom	114			20	mA
Ausgangsstrom	110/12			500	mA
Ausgangsstrom	-1 10/12			500	mA
Ausgangsdauerstrom	1 10/12			400	mA
Ausgangsdauerstrom	1 10/12			400	mA
Gesamtverlustleistung bei #a = 55° C	Ptot			860	mW
Sperrschichttemperatur	Ø j			150	°C
Betriebstemperaturbereich	θa	-15		+55	°C
Statische Werte (θ a = 25° C - 5 K)					
		min.	typ.	max.	
Betriebsruhestrom					
$U_3 = 0$, $U_6 = 1.5 \text{ V}$	14 Soff		7	12	mA
Betriebsstrom					
$U_3 = U_6 = 0, R_L \rightarrow \infty$	4S on-		37	45	mA
$U_3 = U_6 = 1.5 \text{ V}, \text{ RL} \rightarrow \infty$	14S on +	-	38	45	mA
Eingangsstrom					
$U_3 = 1.5 \text{ V}$	1 3IH		130	300	ALA
Ausgangsdifferenzspannung					
$U_3 = U_6 = 0$, $R_L = 100$	-U10/12	2,8	3,6		V
$U_3 = U_6 = 1.5 \text{ V} \text{ R}_1 = 10 \Omega$	+U10/12	2,8	3,6		V
Ausgangsdifferenzspannung					
$(t \le 5 s) = 0.1$					
$U_3 = U_6 = 0$, $R_L = 6\Omega$	-U10/12	2,4	3,3		V
$U_3 = U_6 = 1.5 \text{ V R}_L = 69$	+U10/12	2.4	3,3		V
Eingangsstrom					
$U_1 = 2.5 \text{ V}$	I 1IH		4,3	30	ALA
Obere Schwellenspannung	10.1		0.00		1.1
$U_3 = 0$, $U_6 = 1.5 \text{ V}$.	U8	0,95	1,16	1,45	V
114 = 100 MA	00	0,00	1,10	1,10	
$U_3 = 0$, $U_6 = 1.5$, $I_8 = 100 \mu A$	Hea	0,95	1,12	1,45	V
	U14	0,55	1,12	1,40	
Sperrstrom $U_3 = 0$, $U_6 = 1.5 \text{ V}$, $U_8 = 0.5 \text{ V}$					
	Lo	-1.0	<10,051	1.0	MA
$1_{14} = 100 \mu A$	18	-1,0	-10,001	1,0	Jun
$U_3 = 0$, $U_6 = 1.5 \text{ V}$, $U_{14} = 0.5 \text{ V}$	laa	-1.0	<10,051	10	414
$18 = 100 \mu A$	114	-1,0	-10,001	1,0	μA

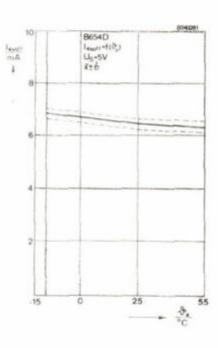

min. typ. max. Ausgangssperrstrom -100 110 -10,051 100 MA $U_3 = 0$, $U_6 = 1.5 \,\text{V}$, $I_8 = I_{14} = 100 \,\mu\text{A}$ $U_{10} = 12,5IV$ Ausgangsemittersspannung U 12/11 19 2,5 2,9 $U_3 = 0$, $U_6 = 1.5 V$, $l_8 = l_{14} = 100 \mu A$


Bestellbezeichnung: Schaltkreis B 654 D TGL 38 008

Blockschaltung:






Meßschaltung-Impulsdehnung

R₆ - R₈ - 68 k; 47 k; 39 k R₇ = R₉ - 33 Ω;56Ω;200 Ω

C3 - C4 - 2,2 µ : 4.4 µ

LG 140 15 82 III 18 391

veb halbleiterwerk frankfurt/oder leitbetrieb im veb kombinat mikroelektronik

DDR - 1200 Frankfurt (Oder) - Postfach 379 - Telefon 460 - Telex 016 252

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie, Telefon: 2180