mikroektronik

Information

C 7136 D

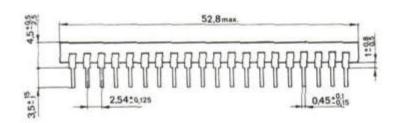
Vergleichstyp: ICL 7136

Der C 7136 D ist ein vollständiger 3 1/2-Digit-Analog-Digital-Wandler in CMOS-Technologie. Er arbeitet nach dem Zweiflankenintegrationsverfahren mit automatischem Nullpunktabgleich.

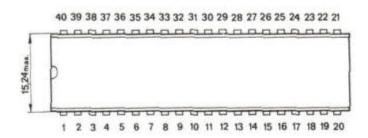
Vorläufige technische Daten

Gehäuse:

40poliges DIL-Plastgehäuse


Bauform:

21.4.23.2.40 nach TGL 26 713


Rastermaß:

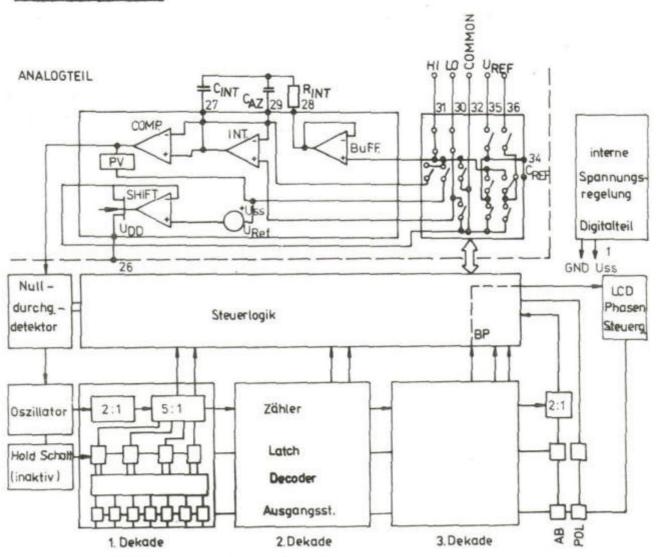
2,54 mm

Reihenabstand: 15.24 mm

Anschlußbelegung:

1	-	U _{SS}	21	-	BP
2	-	1 D	22	-	100 G
3	-	1 C	23	-	100 A
4	-	1 B	24	-	100 C
5	-	1 A	25	-	10 G
6	-	1 F	26	-	UDD
7	-	1 G	27	-	CINT
8	-	1 E	28	-	BUFF
9	-	10 D	29	-	C A/Z
10	-	10 C	30	-	IN LO
11	-	10 B	31	-	IN HI
12	-	10 A	32	-	COMMON
13	-	10 F	33	-	C REF -
14	-	10 E	34	-	C REF
15	-	100 D	35		REF LO
16	-	100 B	36	-	REF HI
17	-	100 F	37	-	TEST
18	-	100 E	38	-	OSC 3
19	-	1.000 AB	39	-	OSC 2
20	_	POL	40	_	OSC 1

Der Einsatz des C 7136 D auf 2,5 mm Raster ist nicht zulässig.


Der C 7136 D zeichnet sich insbesondere durch seine geringe Stromaufnahme, seine geringe Außenbeschaltung und den Betrieb aus nur einer Spannungsquelle aus.

Der C 7136 D kann direkt eine Flüssigkristellanzeige für Parallelansteuerung (z.B. FAR 09) treiben.

Auf dem Chip sind folgende wesentliche Schaltungsteile integriert:

- Analogteil mit Puffer, Integrator, Komparator und Shifter
- Analogschalternetzwerk
- Referenzspannungserzeugung
- Digitalteil mit Steuerwerk, Zähler, Latch, Dekoder und LCD-Ausgangsstufen
- Taktgenerator und Taktimpulsaufbereitung

Blockschaltbild:

Hauptanwendungsfälle:

- Digitalmultimeter
- Digitalpanelmeter
- batteriebetriebene Meßgeräte

Grenzwerte:	min.	max.	
1. Betriebsspannung U _{SS} (gegen U _{DD)}	0	+15	V
2. Analogeingangespannungen	UDD	Uss	٧
3. Eingangsspannung bei externer Taktung an OSC 1	UTEST	U _{SS}	٧

Der Eingangsspannungsbereich darf an INHI und INLO bei Begrenzung des Eingangsstromes auf = 100 /uA überschritten werden.

Betriebsbedingungen:		min.	typ.	max.	
Betriebsspannung	U _{SS}	-	9	-	V
Bufferausgangestrom	IOBUFF	-	-	1	μA
Umgebungstemperatur	v a	0	25	70	°c
Taktfrequenz	fosz		50	64	kHz
Kennwerte:	(gültig für	-			- 12/16/
	sofern nic	ht anders	angege		
Stromaufnahme	(U _{SS} = 15)	min. /) -	100	max.	μA
Linearitätsfehler	(E _L)	-1	-	+1	Digit
Segment- und Backplane- ausgangsspannung		3	_	6	v
Umpolfehler (UREF = 100 mV; UIN ca./190	E _{RO}	-1		+1	Digit
Ratiomessung (Display)	RR	999	1000 1	001	
$(U_{IN} = U_{REF} = 100 \text{ mV})$	-				
Cemmon-Spannung (gegen					
USS: ICommon = 10 ALA)		2,6	-	3,4	V
TK der Common-Spg. ∝ _{Com} (In	f.param.)		150		ppm/K
Nullmassung R _Z (Display)		-0	_	+0	
Eingangsleckstrom (Inf. para	am •)	-	1		pA

Arbeitsweise:

Der C 7136 D arbeitet nach dem Zweiflankenintegrationsverfahren. Während einer zeitlich festen Integrationsphase wird eine der Eingangsspannung proportionale Spannung integriert. In der nachfolgenden Abintegrationsphase
(Deintegration oder Referenzintegration) erfolgt der Abbau dieser Spannung durch Anlegen einer entsprechend gepolten Referenzspannung. Die Zeitdauer bis zum Nulldurchgang ist der Eingangsspannung proportional, ebenso die
Zahl der Taktimpulse während der Abintegration. Diese
Taktimpulszahl wird ermittelt. Das angezeigte Ergebnis
ist im konkreten Fall

Der Abintegrationsphase folgt die Nullintegration zum Abbau von vorhandenen Restladungen und danach folgt der automatische Nullabgleich in Form des automatischen Offsetabgleichs des Systems (AUTO-ZERO).

Außenbeschaltung:

Die Außenbeschaltung muß in Abhängigkeit von Taktfrequenz, Eingangsspannung, Gleichtaktspannung und Ausgangsstrom des Buffer- OPV optimiert werden.

Hier seien einige grob vereinfachte Dimensionierungsregeln angegeben:

$$R_{INT} (MOhm) = U_{INmax} (V)$$

$$C_{INT} (nF) = \frac{250}{U_{INT} (V) \cdot f_c(s^{-1})}$$

mit U_{INT} = max. Spannung auf dem Integrationskondensator

Bei Bezug der Eingangsspannung auf Analog Common (PIN 32 und PIN 30 verbunden) kann ^UINT mit 2 V angesetzt werden. Als Integrationskondensator sollte der nächstgrößere Normwert des berechneten Wertes eingesetzt werden, um die Sättigung des Integratorausgangs zu vermeiden.

Zur Erreichung der vollen Genauigkeit muß ein hochwertiger Integrationskondensator eingesetzt werden. (Polypropylen-Kondensatoren)

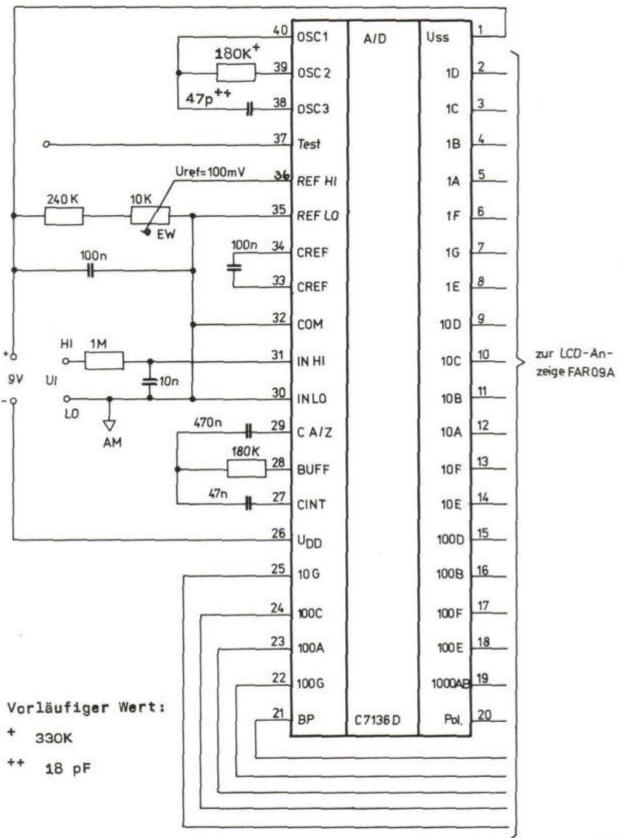
Der Auto-Zero-Kondensator sollte etwa 470 nF bei 100 mV Referenzspannung und etwa 100 nF bei 1 V Referenzspannung betragen. Der Referenzkondensator ist bei 50 kHz Takt-frequenz mit 100 nF ausreichend bemessen. Der Oszillator kann als RC-Oszillator oder Quarz-Oszillator beschaltet werden bzw. es kann über PIN 40 eine externe Taktung erfolgen. Mit dem internen RC-Oszillator ist die volle Genauigkeit erreichbar.

Ausgangs- und Eingangsschaltungen

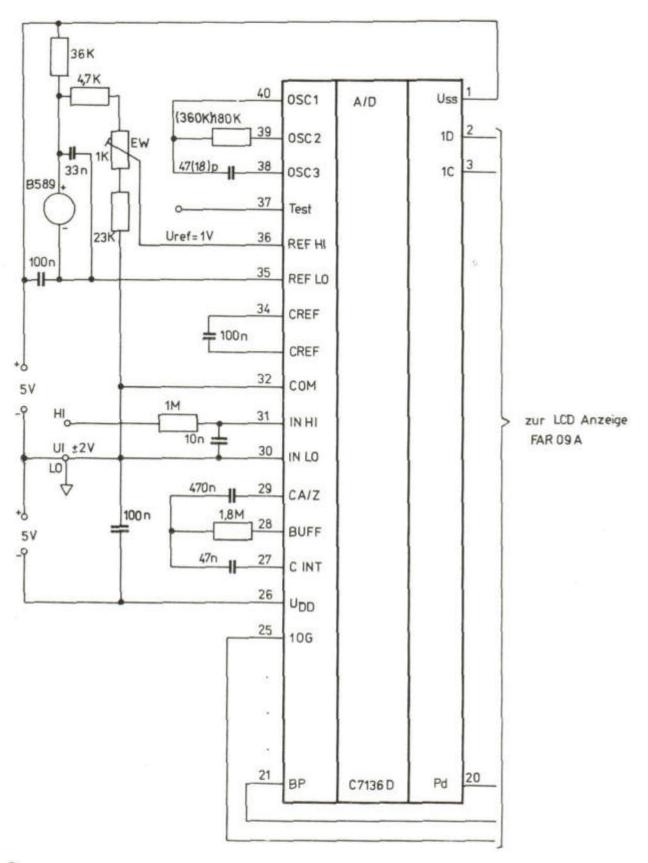
Alle Eingänge besitzen Schutzschaltungen.

Ein vollständiger Schutz gegen Beschädigung durch elektrostatische Aufladungen kann damit aber nicht garantiert werden.

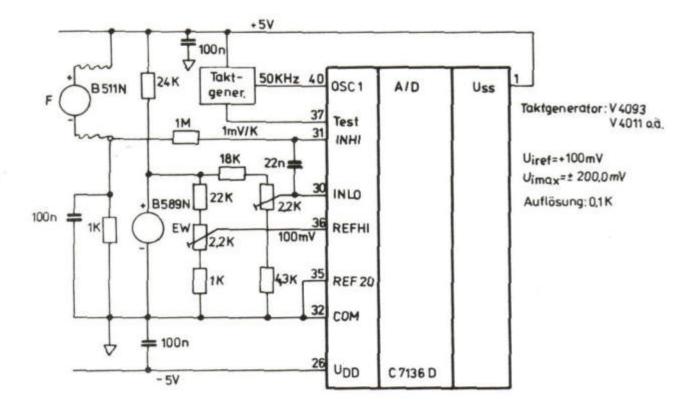
Die Ausgangsstufen für Segmente und Backplane sind symmetrische Gegentaktausgangsstufen mit $R_{\rm DSon}$ ca. 5 kOhm.

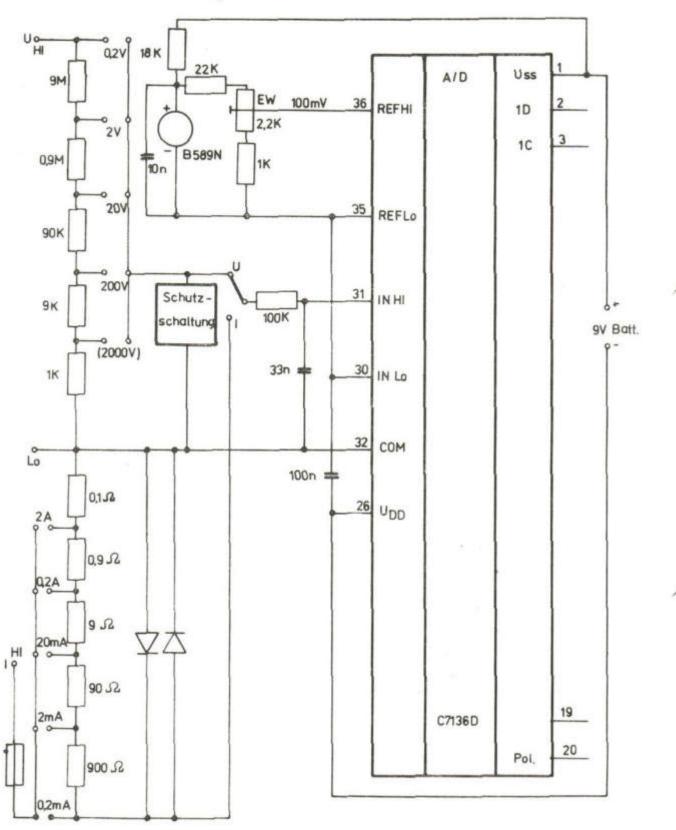

Wird PIN 37 an U_{SS} geschaltet, dann sind alle Segmente aktiviert.

Achtung! Im Testmode (PIN 37 an U_{SS}) liegen am
Backplaneausgang und an den Segmentausgängen statische Signale an. Bei diesem
Betrieb kann die LCD-Anzeige innerhalb
weniger Minuten zerstört werden!


Ober PIN 37 ist die intern erzeugte Digitalmasse über einen Reihenwiderstand von 500 Ohm erreichbar. Damit ist die Versorgung externer Logik aus der internen Spannungsversorgung des Schaltkreises möglich.

Applikationsbeispiele:


 Versorgung des C 7136 D aus einer 9 V-Batterie und Nutzung der internen Referenz


2. Versorgung des C 7136 D mit $\stackrel{+}{=}$ 5 V externe Referenzspannungserzeugung ($U_{\rm Emax}$ = $\stackrel{+}{=}$ 2 V)

3. Thermometerschaltung

4. Multimeterschaltung

C_{REF} = 100nF, R_{INT} = 180 k J2

C_{A/Z} = 470nF fosc = 50 kHz

CINT=47 nF

L 605/86 III/18/397

veb halbleiterwerk frankfurt/oder im veb kombinat mikroelektronik

DDR - 1200 Frankfurt (Oder), Postfach 379

Telefon: 460, Telex: 016252

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie, Telefon: 2180