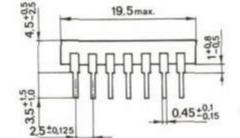
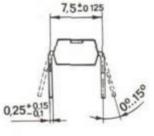
mikreektronik

Information

D 121 D E 121 D

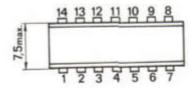

Internationaler Vergleichstyp: SN 74 121 SN 84 121


Bipolarer Monostabiler Multivibrator-Schaltkreis mit Schmitt-Trigger-Eingängen.

Vorläufige technische Daten

Anschlußbelegung und Gehäuse:

- 1 Ausgang Q
- 3 Eingang A 1
- 4 Eingang A 2
- 5 Eingang B
- 6 Ausgang Q
- 7 Masse M

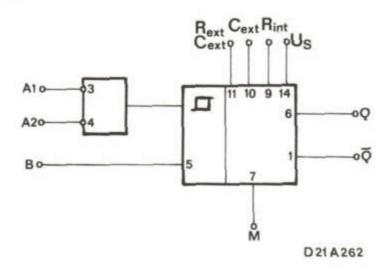


- 9 Interner Zeitwiderstand Rint
- 10 Externer Zeitkondensator Cext
- 11 Externer Zeitwiderstand R_{ext} und externer Zeitkondensator C_{ext}
- 14 Betriebsspannung Us

2, 8

12,13 nicht belegt

21. 2. 1. 2.14 TGL 26713



Gehäuse: 14-poliges DIL-Plastgehäuse Bauform: 21.2.1.2.14 nach TGL 26 713

Masse: ≤ 1,5 g

Typstandard: TGL 39 800

Blockschaltbild:

Logische Funktion:

t _n			t_{n+1}			t_{n+1}		
A ₁	A ₂	В	A ₁	A ₂	В	Q	ā	
Н	Н	L	Н	Н	Н	L	Н	
L	X	Н	L	X	L	L	н	
X	L	Н	×	L	L	L	Н	
L	X	L	L	X	Н	J		
X	L	L	×	L	н		7	
Н	Н	Н	×	L	Н			
Н	н	н	L	X	Н			
X	L	L	×	Н	L	L	Н	
L	X	L	Н	X	L	L	Н	
X	L	Н	Н	Н	Н	L	Н	
L	X	Н	Н	Н	Н	L	Н	
Н	Н	L	Х	L	L	L	Н	
Н	Н	L	L	X	L	L	Н	

 t_n : Zeit vor dem Eingangsimpuls

t_{n+1}: Zeit nach dem Eingangsimpuls

x: beliebig

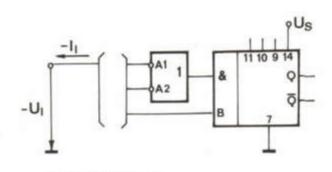
Grenzwerte:

			min.	max.	
Betriebsspannung		Us	0	7	V
Eingangsspannung		U,	-0.8^{1})	$5,5^2$)	V
Eingangsspannung zw. zwei Eingängen		U _{ID}		5,54)	V
Ausgangslastfaktor		No		10	
Betriebstemperaturbereich	D-Typ	ϑa	0	70	°C
	E-Typ	ϑa	-25	+85	°C

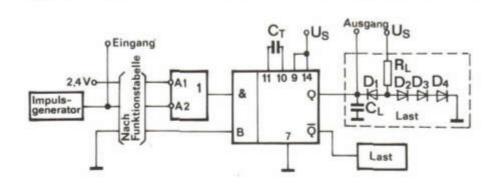
Betriebsbedingungen:

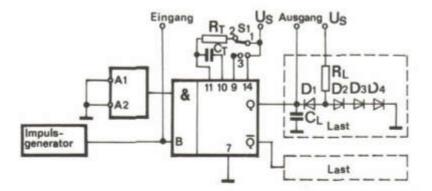
	min.	max.	
Us	4,75	5,25	V
UIH	2		V
UIL		0,8	V
t_T		1	V/s
t _T		1	V/µs
tp	50		ns
R _T	1,4	40	$k\Omega$
CT	0	1000	μF
t _{p(out)}		28	s
τ		0,67 0,90	
	U_{IH} U_{IL} t_{T} t_{p} R_{T} C_{T}	U _S 4,75 U _{IH} 2 U _{IL} 2 t _T 50 R _T 1,4 C _T 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- 1) Im dynamischen Fall ist $-U_{IL} \ge 1,5$ V erlaubt, wenn die Zeitdauer des negativen Eingangsimpulses ≤ 200 ns bei einem Tastverhältnis von $\le 0,5$ ist.
- Die positive Eingangsspannung U_{IH} bzw. die Differenzspannung |U_{ID}| zwischen zwei Eingängen darf ≥ 5,5 V sein, wenn der Eingangsstrom auf I_I ≤ 1 mA begrenzt wird.
- 3) $t_{p(out)} \approx C_T \cdot R_T \cdot Ln 2$
- 4) Das Tastverhältnis am Ausgang ist das Verhältnis von Haltezeit (Monoflop getriggert) zur Periodendauer (Haltezeit + Erholzeit). Ein höheres Tastverhältnis als angegeben ist möglich, wenn ein bestimmter Wert der Impulsbreitenverringerung erlaubt ist.

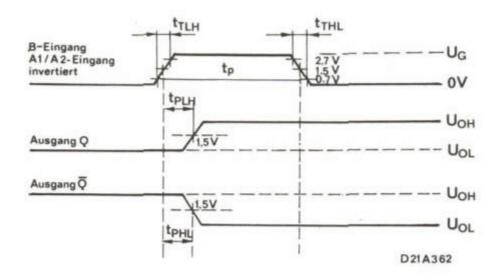

Statische Kennwerte⁵), (U_S = 5 V \pm 0,25 V, ϑ_a = 0 . . . 70°C D-Typ, ϑ_a = -25 . . . +85°C E-Typ):

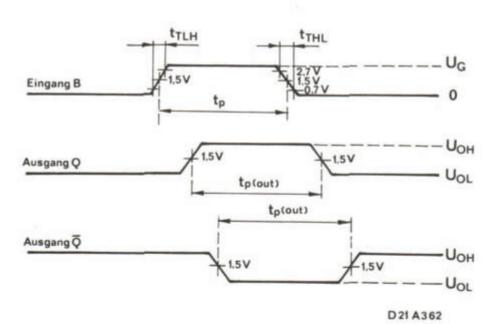
		min.	max.	
H-Ausgangsspannung $U_S=4,75~V;~-I_{OH}=400~\mu A$ $R_T=10~k\Omega$ $U_{IH}=2~V,~U_{IL}=0,8~V$ $C_T=1~\mu F$	U _{OH}	2,4		٧
L-Ausgangsspannung $U_S=4,75~V,~I_{OL}=16~mA, \\ R_T=10~k\Omega \\ U_{IH}=2~V,~U_{IL}=0,8~V \\ C_T=1~\mu F$	U _{OL}		0,4	٧
Flußspannung der Eingangsdiode $-I_1 = 12$ mA, $U_S = 4,75$ V	-U _I		1,5	V
L-Eingangsstrom A_1 oder A_2 $U_S = 5,25 \text{ V}, U_{IL} = 0,4 \text{ V}$	-I _{IL}		1,6	mA
L-Eingangsstrom B $U_S = 5,25 \text{ V}, U_{IL} = 0,4 \text{ V}$	-I _{IL}		3,2	mA
H-Eingangsstrom A_1 oder A_2 $U_S = 5,25 \text{ V}, U_{IH} = 2,4 \text{ V}$	I _{IH}		40	μΑ
H-Eingangsstrom B $U_S = 5,25 \text{ V}, U_{IH} = 2,4 \text{ V}$	I _{IH}		80	μΑ
Eingangsstrom bei max. Eingangsspannung A_1 oder A_2 $U_S = 5,25 \text{ V}$, $U_I = 5,5 \text{ V}$	l,	14	1	mA
Eingangsstrom bei max. Eingangsspannung B $U_S = 5,25 \text{ V}, U_l = 5,5 \text{ V}$	l,		1	mA
Ausgangskurzschlußstrom ⁶) $U_S = 5,25 \text{ V}$	-l _{os}	18	55	mA
Stromaufnahme (im Ruhestand) $U_S = 5,25 \text{ V}, C_T = 1 \mu\text{F}$	Is		25	mA
Stromaufnahme (im getriggerten Zustand) $U_S=5,\!25V,C_T=1\mu\text{F}$	Is		40	mA

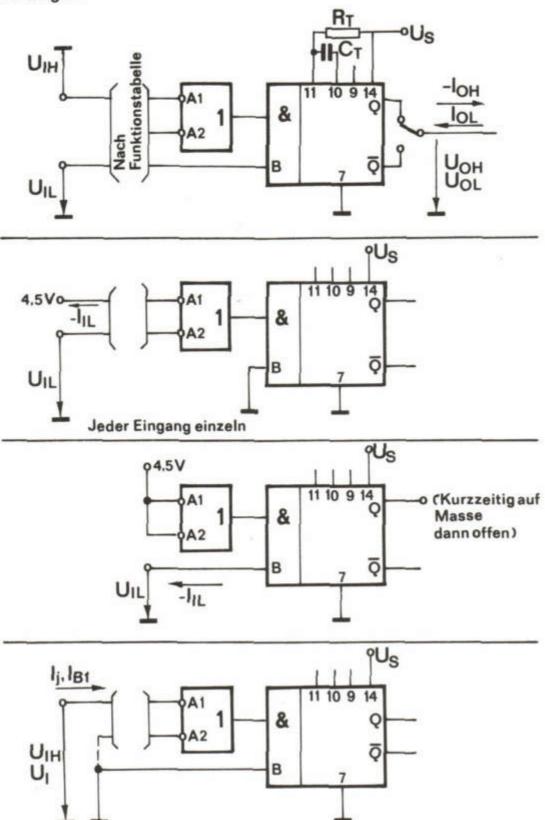

- 5) Die Werte der Kenngrößen sind bei Einstellung der Nennwerte zu messen. Dabei gelten folgende Toleranzen: Betriebsspannung bei statischen Kenngrößen \pm 1 % zusätzlich \pm 5 mV; alle übrigen Spannungen und Ströme: \pm 2,5 %
- 6) Nicht mehr als einen Ausgang gleichzeitig auf Masse legen.


Dynamische Kennwerte (U $_{S}=5$ V \pm 0,055 V, $\vartheta_{a}=25^{\circ}\text{C})$:

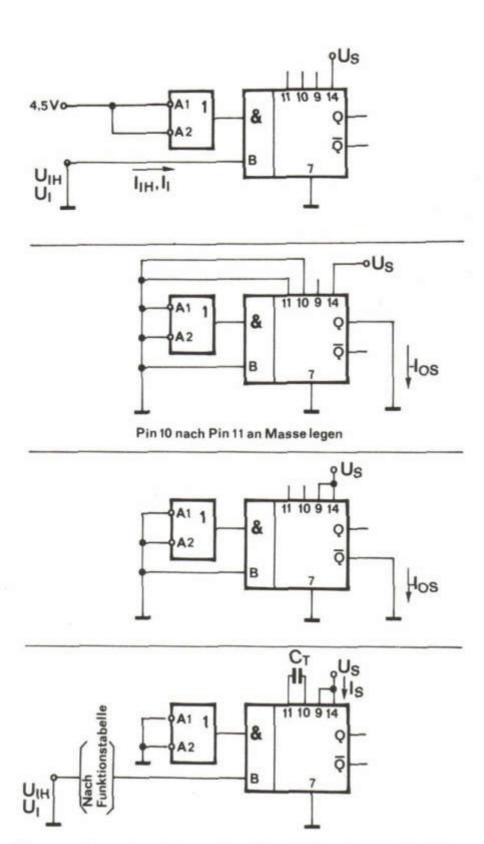
Ci	711	min.	max.	
Signalverzögerungszeit für Übergang a bzw. Lam Ausgang	luf H			
$C_L = 15 \text{ pF}, C_T = 80 \text{ pF}, R_L = 400 \Omega$	t_{PLH} $B \rightarrow Q$	15	55	ns
	$\begin{array}{c} t_{pLH} \\ A_1/A_2 \rightarrow O \end{array}$	25	70	ns
	t_{pHL} $B \rightarrow \overline{Q}$	20	65	ns
	$\begin{matrix} t_{pHL} \\ A_1/A_2 \rightarrow \overline{Q} \end{matrix}$	30	80	ns
Impulsbreite (mit internem Zeitwiderst: $C_L = 15 \text{ pF}, C_T = 80 \text{ pF}$ $R_L = 400 \Omega, f = 1 \text{ MHz}$	and) t _{p(out)}	70	150	ns
Impulsbreite (ohne Zeitkondensator) $C_L = 15$ pF, $C_T = 0$ $R_L = 400 \Omega$, $f = 1$ MHz	$t_{p(out)}$	20	50	ns
Impulsbreite (mit externem Zeitwiderst $C_T = 100$ pF, $f = 500$ kHz $C_L = 15$ pF, $R_T = 10$ k Ω $R_L = 400$ Ω	t _{p(out)}	600	800	ns
C_T = 1 μ F, f = 50 Hz C_L = 15 pF, R_T = 10 k Ω R_L = 400 Ω	t _{p(out)}	6	8	ms




Jeder Eingang einzeln



Impulsdiagramm:



Meßschaltungen:

Jeder Eingang einzeln Beim Prüfen von I_IH wird der jeweils andere Eingang auf Masse gelegt. Beim Prüfen von I_I bleibt jeweils andere Eingang offen.

Bestellbezeichnung: Integrierter Schaltkreis D 121 D nach TGL 39 800

Ag 05/043/83

veb halbleiterwerk frankfurt/oder leitbetrieb im veb kombinst mikroelektronik

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie, Telefon: 2180