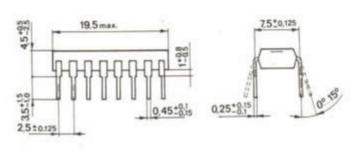
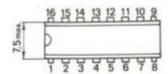
mikroelektronik

Information

D 175 D E 175 D


Vorläufige technische Daten

Internationaler Vergleichstyp: SN 7475


N 7475 SN 8475

Ein TTL MSI-4-Bit bistabiler Verriegelungsschaltkreis

Anschlußbelegung und Gehäuse:

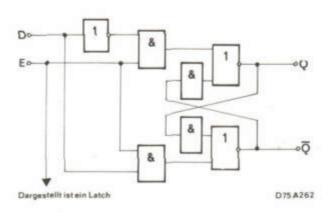
21.1.1.2.16 TGL 26713

1 - M-Masse		16 - Q1 Ausgang
2 - D 1 Dateneingang		15 - Q ₂ Ausgang
3 - D 2 Date	neingang	$14 - \overline{Q}_2$ Ausgang
6 - D 3 Date	neingang	$11 - \overline{Q}_3$ Ausgang
7 - D 4 Date	neingang	10 - Q ₃ Ausgang
4-E3, E4	Freigabeeingänge,	9 - Q ₄ Ausgang
13-E1, E2	paarweise zusammengefaßt	$1 - \overline{Q}_1$ Ausgang
5 - Us-Betrie	ebsspannung	$8 - \overline{\Omega}_4$ Ausgang

Gehäuse:

16poliges DIL-Plastgehäuse

Masse:


≦ 1,5 g

Bauform:

21.1.1.2.16 nach TGL 26 713

Typstandard: TGL 39 799

Blockschaltbild:

Logische Funktion

t _n	$t_n + 1$
DEQ	DEQ
ннн	LHL
LHL	ннн
ннн	HLH
HLH	LLH
LLH	LHL
LHL	LLL
LLL	HLL
HLL	ннн

t_n: Zeit vor dem Eingangsimpuls t_n+1: Zeit nach dem Eingangsimpuls

Grenzwerte, gültig für den Betriebstemperaturbereich:

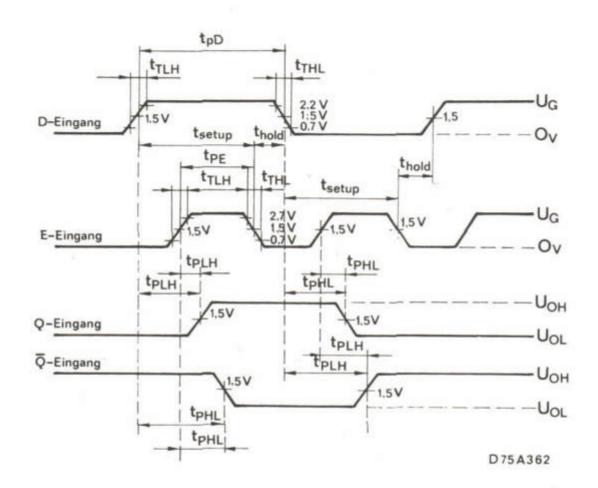
Betriebsspannung Eingangsspannung	U _S U _I	min. 0 -0,8 ¹⁾	max. 7 5,5 ²⁾	V
Eingangsspannung zwischen 2 Eingängen Ausgangslastfaktor	$ U_{iD} $		5,5 ²⁾ 10	٧
Betriebstemperaturbereich D-Typ E-Typ	ϑa ϑa	0 -25	70 +85	°C

- 1) Im dynamischen Fall ist $-U_{1L} \stackrel{>}{=} 1,5$ V erlaubt, wenn die Zeitdauer des negativen Eingangsimpulses $\stackrel{>}{=} 200$ ns bei einem Tastverhältnis von $\stackrel{>}{=} 0,5$ ist.

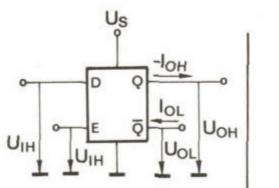
Betriebsbedingungen:

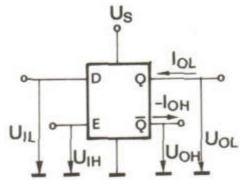
		min.	max.	
Betriebsspannung	Us	4,75	5,25	V
H-Eingangsspannung	UIH	2		V
L-Eingangsspannung	UIL		0,8	V
Freigabeimpulsdauer	t _{pE}	20		ns
Voreinstellzeit	t _{setup}	20		ns
Haltezeit	thold	0		ns
Betriebstemperaturbereich				
D-Typ	ϑ_a	0	70	°C
E-Typ	ϑ_a	-25	+85	°C

Statische Kennwerte (U $_S=5$ V \pm 0,25 V, $\vartheta_a=0^{\circ}C.$ $...70^{\circ}C/D\text{-Typ},$ $\vartheta_a=-25^{\circ}C.$ $...+85^{\circ}C/E\text{-Typ}$

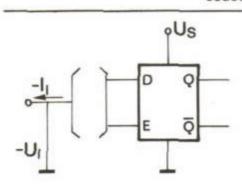

		min.	max.	
H-Ausgangsspannung	UoH	2,4		V
$U_S = 4,75 \text{ V}, -I_{OH} = 400 \mu\text{A}$				
$U_{IL} = 0.8 \text{ V}, U_{IH} = 2.0 \text{ V}$				
L-Ausgangsspannung	UOL		0,4	V
$U_S = 4,75 \text{ V}, I_{OL} = 16 \text{ mA}$				
$U_{IH} = 2.0 \text{ V}, U_{IL} = 0.8 \text{ V}$				
Flußspannung der Eingangsdiode	$-U_1$		1,5	V
$-I_1 = 12 \text{ mA}, U_S = 4,75 \text{ V}$				
L-Eingangsstrom Eingang D	$-I_{1L}$		3,2	mA
$U_S = 5,25 \text{ V}, U_{IL} = 0,4 \text{ V}$				
L-Eingangsstrom Eingang E	-111		6,4	mA
$U_S = 5,25 \text{ V}, U_{IL} = 0,4 \text{ V}$				
H-Eingangsstrom Eingang D	IIH		80	μΑ
$U_S = 5,25 \text{ V}, U_{IH} = 2,4 \text{ V}$				
H-Eingangsstrom Eingang E	I _{IH}		160	μΑ
$U_S = 5,25 \text{ V}, U_{IH} = 2,4 \text{ V}$				
Eingangsstrom bei max. Eingangsspannung D, E	I		1	mA
$U_S = 5.25 \text{ V}, U_1 = 5.5 \text{ V}$			-	
Ausgangskurzschlußstrom ³⁾	-los	18	57	mA
$U_{\rm S} = 5.25 \rm V$				
Stromaufnahme	Is		53	mA
$U_{S} = 5,25 \text{ V}$				

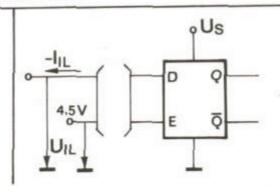
Jedes Latch wird einzeln geprüft. Nicht mehr als einen Ausgang gleichzeitig auf Masse legen.

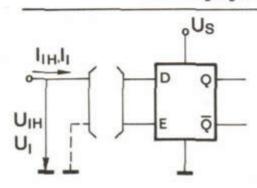

Dynamische Kennwerte ($\vartheta_a = 25^{\circ}C - 5~K,\, U_S = 5~V \pm 0,055~V)$

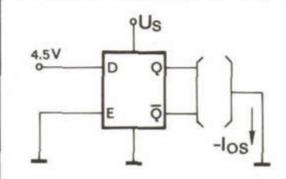

		min.	max.	
Signalverzögerungszeit für Übergang				
auf H bzw. L am Ausgang	$t_{pLH}(D-Q)$	16	30	ns
$R_L = 400 \text{ Ohm}, C_L = 15 \text{ pF}$	$t_{pHL}(D-Q)$	14	25	ns
	$t_{pLH}(D-\overline{Q})$	24	40	ns
	$t_{pHL}(D-\overline{Q})$	7	15	ns
	$t_{pLH}(E-Q)$	16	30	ns
	$t_{pHL}(E-Q)$	7	15	ns
	$t_{pLH}(E-\overline{Q})$	16	30	ns
	$t_{pHL}(E-\overline{Q})$	7	15	ns

Impulsdiagramm:

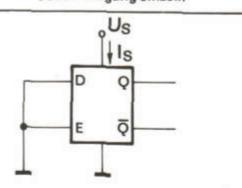



Meßschaltungen:




Jedes Latch einzeln

Jeder Eingang und jedes Latch einzeln



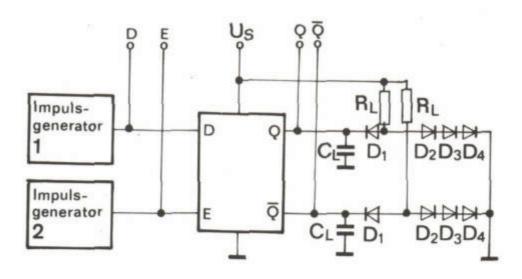
Jeder Ausgang einzeln

Jeder Eingang und jedes Latch einzeln.

Beim Prüfen von I_{IH} wird der jeweils andere Eingang auf Masse gelegt.

Beim Prüfen von II bleibt der jeweils andere Eingang offen.

Gleichzeitige Prüfung aller 4 Latch


Anforderungen an den Meßaufbau:

Die Impulsgeneratoren (IG) müssen folgende Daten besitzen:

 $U_{G} = 3.5 \text{ V}$

 $Z_0 = 50 \text{ Ohm}$

 $t_{TLH} = t_{THL} = 10 \text{ ns}$

Bestellbezeichnung: Integrierter Schaltkreis D 175 D nach TGL 39 799

Ag 05/043/83

veb halbleiterwerk frankfurt/oder leitbetrieb im veb kombinat mikroelektronik

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie, Telefon: 2180