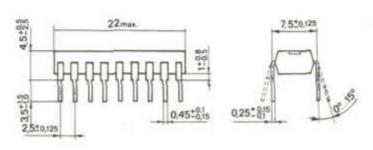
mikroelektronik


Information

D 395 D Vorläufige technische Daten

Der integrierte Schaltkreis D 395 D dient in Verbindung mit externen Leistungsendstufen der gechopperten Ansteuerung von Schrittmotoren für Bipolarbetrieb.

Abmessungen in mm und Anschlußbelegung:

21.1.1.2.18 TGL 26713

- 1 Synchronisationseingang Sy 1
- 2 Komparatorausgang A 1
- 3 Komparatoreingang K 2
- 4 Komparatoreingang K 1
- 5 negative Betriebsspannung U_{S-}
- 6 Komparatoreingang K 3
- 7 Komparatoreingang K 4
- 8 Komparatorausgang A 4
- 9 Synchronisationseingang Sy 2

- 10 Eingang E 2
- 11 Eingang Sp
- 12 Ausgang A 2
- 13 negative Betriebsspannung Us-
- 14 Masse
- 15 negative Betriebsspannung U_{S-}
- 16 positive Betriebsspannung US+
- 17 Ausgang A 3
- 18 Eingang E 1

Logische Funktion:

 $A1 = \overline{K2 \times Sy 1} \text{ mit } K2 = \overline{K1}$

 $A2 = \overline{E2} \times Sp$

 $A3 = \overline{E1} \times Sp$

 $A4 = \overline{K} 4 \times \overline{Sy} 2 \text{ mit } K4 = \overline{K} 3$

Typstandard: TGL 39 934

Gehäuse:

DIL-Plast

Bauform:

21.1.1.2.18 nach TGL 26 713

Masse:

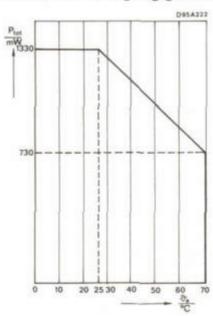
≤ 1,5 g

Grenzwerte, gültig für den Betriebstemperaturbereich:

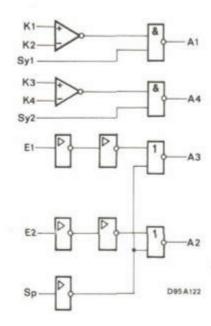
	min.	max.	
Positive Betriebsspannung U _{S+}		7	V
Negative Betriebsspannung U _S -	7		V
Eingangsspannungsdifferenz zwischen			
K 1 und K 2 oder K 3 und K 4	△ U _{IK}		V
Eingangsspannung an K 1, K 2, K 3 oder K 4 U _{IK}	-5	+5	V
Eingangsspannung an Sy 1 oder Sy 2 U _{ISy}	0	5,5	V
Eingangsspannung an E 1, E 2 oder Sp U _{IE}	0	$+U_S$	V
U _{ISp}	0	+U _s	V
Ausgangsstrom in den Ausgang A 1 oder A 4 loL		20	mA
Ausgangsstrom in den Ausgang loL		55 ¹⁾	mA
A 2 oder A 3		70 ²⁾	mA
Ausgangsstrom aus dem Ausgang I _{OH}		-70^{3}	mA
A 1 oder A 4			
Max. Dauerverlustleistung der			
Ausgangstransistoren P _V		150 ⁴⁾	mW
Betriebstemperaturbereich ϑ_a	0	+70	°C

- 1) $t_{av} \stackrel{\leq}{=} 20 \text{ ms}$
- 2) $t_p \leq 10 \text{ ms}$
- 3) Nicht mehr als einen Ausgang gleichzeitig für maximal 1 ms gegen Masse kurzschließen. Die Periodendauer darf 60 s nicht unterschreiten.
- 4) Die Verlustleistung P_V der Ausgangstransistoren gilt für die Ausgänge A 2 und A 3 bei H-Zustand und ist wie folgt zu berechnen:

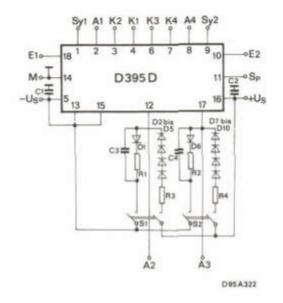
$$P_V = |I_{OH}| \times U_{CE} \text{ mit } U_{CE} = +U_S - U_{OH} - 0.7 \text{ V}$$


Elektrische Kennwerte: (U_S = \pm 4,75 V . . . \pm 5,25 V, ϑ_a = 25°C - 5 K)

		min.	max.	
H-Eingangsstrom in K 1, K 2, K 3 oder K 4 $U_S = \pm 5,25 \text{ V}$, $U_{IK} = 0,5 \text{ V}^{5)}$	I_{1HK}	-	75	μΑ
$U_{1K} = \pm 3 V$				


		min.	max.	
H-Eingangsstrom aus K 1, K 2, K 3 oder K 4 $U_S = +$ 5,25 V, $U_{IK} = -$ 2 $V^{5)}$ $U_{IK} = \pm$ 3 V	-I _{IHK}		10	μΑ
H-Eingangsstrom in Sy 1, Sy 2, E 1, E 2 oder Sp				
$U_S = 5.25 \text{ V}, U_{IH} = 5 \text{ V}^{5)}$	I _{IH}		40	uА
$U_{IH} = 2.4 V^{5}$	I _{IH}		40	μΑ
L-Eingangsstrom aus Sy 1 oder Sy 2 $U_S = 5,25 \text{ V}, U_{IL} = 0,4 \text{ V}^{5)}$	$-I_{HLSy}$		1,6	mA
L-Eingangsstrom aus E 1, E 2 oder Sp $U_S = 5,25 \text{ V}, U_{IL} = 0,4 \text{ V}^{5)}$	-I _{IL}		10	μΑ
H-Ausgangsspannung an A 1 oder A 4 $U_S = \pm 4,75 \text{ V}$, $I_{OH} = -1,2 \text{ mA}^{5)}$	U _{OH}	2,4	-	V
H-Ausgangsspannung an A 2 oder A 3 $U_S = \pm 4.75 \text{V}$, 6) 7)	U _{OH}	2,4		V
L-Ausgangsspannung an A 1 oder A 4 $U_S = \pm 4,75 \text{ V}, I_{OL} = 16 \text{ mA}^{5)}$	$-U_{\text{OL}}$	4,35		V
L-Ausgangsspannung an A 2 oder A 3 $U_S = \pm 4,75 \text{ V}$, Sp auf 2 V, 6) 7)	$-U_{OL}$	4,35		V
H-Ausgangsstrom aus A 2 oder A 3 $U_S = \pm 5 \text{ V}$, $U_O = 0.7 \text{ V}$ bis $U_{OH}^{5) (6)}$	$-I_{OH}$	50		mA
Stromaufnahme in $+U_S$ $U_S = \pm 5 \text{ V}, \text{ K } 1 = \text{ K } 3 = \text{ Sp } = \text{ E } 1 = \text{ E } 2 \text{ auf } 0; \text{ K } 2 = \text{ K } 4 \text{ auf } 3 \text{ V}; \text{ Sy } 1 = \text{ Sy } 2 \text{ auf } 5 \text{ V}^{5)}$	I _{St}		60	mA
Stromaufnahme in $-U_S$ $U_S = \pm 5 \text{ V}, \text{ K } 1 = \text{ K } 3 = \text{ Sp } = \text{ E } 1 = \text{ E } 2 \text{ auf } 0; \text{ K } 2 = \text{ K } 4$ auf 3 V; Sy 1 = Sy 2 auf 5 V ⁵⁾	-I _{S-}		30	mA

- 5) S 1 und S 2 offen
- 6) zusätzlich $U_{IH}=2\,V$ bzw. $U_{IL}=0.8\,V$ nach logischer Funktion 7) S 1 und S 2 jeweils nur am zu messenden Ausgang geschlossen


Zulässiger Arbeitsbereich:

Blockschaltung:

Meßschaltung:

Bestellbezeichnung: Integrierter Schaltkreis D 395 D nach TGL 39 934

Ag 05/043/83

veb halbleiterwerk frankfurt/oder leitbetrieb im veb kombinat mikroelektronik

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie, Telefon: 2180