

Information

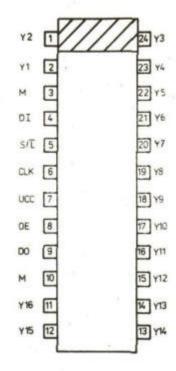
D 718 D

Der integrierte Schaltkreis D 718 D dient zur Serien-Parallel-Wandlung und Zwischenspeicherung einer 16-Bit-Information. Er beinhaltet ein 16-Bit-Schieberegister mit anschließendem Latch und Ausgangstreiber, die als Konstantstromsenken gestaltet sind. Ein Low-Bit im Schieberegister aktiviert die Konstantstromsenke des Ausganges. Bei einem High-Bit ist der jeweilige Ausgang inaktiv. Es ist ein serieller Ausgang zur Kaskadierung vorhanden. An den parallelen Ausgängen ist der direkte Anschluß von LED möglich.

Vorläufige technische Daten:

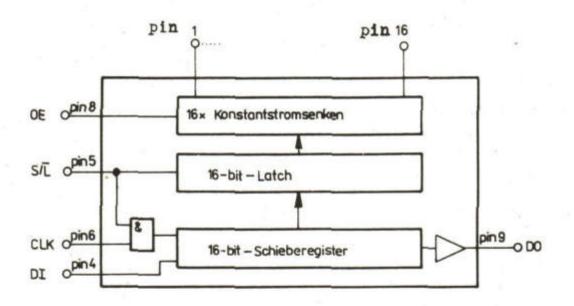
Gehäuse: 24poliges DIL-Plastgehäuse Bauform: 21.1.12.3.24 nach TGL 26 713

Pinbelegung:


Y : Ausgänge M : Masse

DI : Serieller Dateneingang

S/L : Shift/Load CLK : Takteingang


U_{CC} : Betriebsspannung OE : Output Enable

DO : Serieller Datenausgang

D718 A1 H85

Blockschaltung:

D 718 A2 H86

Funktionsbeschreibung:

Signal Pin Beschreibung

- DI 4 Dateneingang des Schieberegisters seriell.
- S/L

 SHIFT/LOAD, H-Pegel ermöglicht das Einschieben von Informationen in das Schieberegister mittels Impulsen an CLK, das Latch behält die vorher gespeicherte Information.

 Mit der H/L-Flanke wird die im Schieberegister stehende Information in die Latches übernommen.

 Weitere Impulse an CLK während S/L = L führen nicht mehr zum Schieben der Information im Schieberegister. Zu beachten ist, daß eine H/L-Flanke an S/L bei CLK = High ebenfalls zum Schieben der Information ins Schieberegister und zur sofortigen Übernahme in die Latches führt.
- CLK 6 Takteingang des Schieberegisters, Schieben und Informationsübernahme von DI erfolgt auf H/L-Flanke.
- OE Freigabeeingang für Stromtreiber, bei OE = L sind alle Ausgangsstufen inaktiv, es fließt nur der Reststrom I_{OI}, OE = H aktiviert die Ausgangsstufen entsprechend der Information im Latch.
- DO 9 serieller Datenausgang des Schieberegisters

Grenzwerte: (gültig für den Betriebstemperaturbereich)

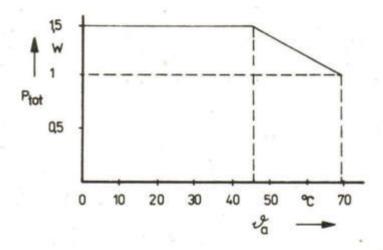
		min.	max.	*
Betriebsspannung Eingangsspannung an den	Ucc	0	7	V
Steuereingängen	Uı	$-0,3^{1)}$	5,5	V
Ausgangsspannung an den				
Parallelausgängen	Uo	0	7	V
Verlustleistung je Ausgang	Pvo		100	mW

Hauptkennwerte: (gültig für U_{CC} = 5 V \pm 5 %, ϑ_a = 25 °C - 5K)

		min.	max.	
Stromaufnahme	Icc		60	mA
$U_{CC} = 5,25 \text{ V} \pm 52,5 \text{ mV}$				
$U_{IB} = 0 V$				
High-Eingangsstrom	IIH		30	μΑ
$U_{IH} = 5.5 \text{ V} \pm 0.1 \text{ V}$				
Low-Eingangsstrom	I _{IL}		300	μΑ
$U_{IL} = 0.4 \text{ V} \pm 0.8 \text{ mV}$				

¹⁾ gilt für den statistischen Betriebsfall

Nebenkenngrößen: (gültig für $U_{CC} = 5 \text{ V} \pm 5 \text{ %}$, $\vartheta_a = 25 \, ^{\circ}\text{C} - 5 \text{K}$)


		min.	max.	
Ausgangsstrom (Mittelwert)	I _{OAM} 1)			
$U_{CC} = 5 \text{ V} \pm 50 \text{ mV}, U_{IB} = 5 \text{ V} \pm 0.1 \text{ V}$ $U_{O} \approx 3 \text{ V} \pm 1 \%$		9	15	mA
Ausgangsreststrom $U_0 \approx 7 \text{ V} \pm 70 \text{ mV}, U_{IB} = 0 \text{ V}$	loi		250	μΑ
Mittelwertbezogener Ausgangsstrom	. V ₁	0,9	1,1	
I _{OAM} High-Ausgangsspannung an DO I _{OH} ≈ − 30 μA ± 1,5 μA	U _{OH}	2,4		v
Low- Ausgangsspannung an DO $I_{OL} = 300 \mu\text{A} \pm 15 \mu\text{A}$	U _{OL}		0,4	v

¹⁾ Mittelwert der 16 Ausgangsströme I_{OM}

Betriebsbedingungen:

Betriebsspannung	Ucc	4,75	5,25	V
Low-Eingangsspannung	U _{IL}		0,8	V
High-Eingangsspannung	Ù _{IH}	2,0		. V
Umgebungstemperatur	ϑa	0	70	°C

Verlustleistungsreduktionskurve:

D718 A3 H86

Ag 05/024/87

veb halbleiterwerk frankfurt/oder im veb kombinat mikroelektronik DDR 1200 Frankfurt/Oder - Telefon 4 60

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie