# mikreektronik

# Information

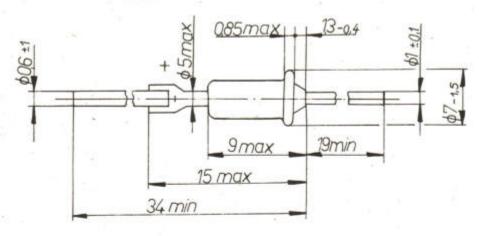


D 818 A, D 818 B, D 818 W, D 818 G, D 818 D, D 818 E

1/86

Herstellerland: UdSSR

Übersetzung, bearb.


#### Allgemeines

Die Silizium-Referenzelemente D 818 A - D 818 E sind für allgemeinen Einsatz vorgesehen.

Sie sind im hermetisch verschlossenen Metallgehäuse untergebracht. Die Masse eines Referenzelementes beträgt maximal 1 g.

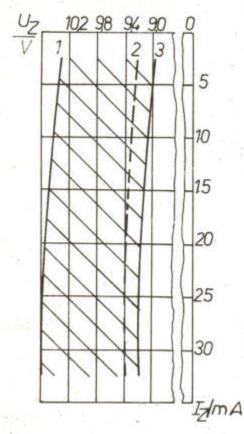
### Betriebsbedingungen

Umgebungstemperatur tamb = -60 °C bis +100 °C



### Grenzwerte

| Kenngrößen                 | Kurz-<br>zeichen | Wert       | Einheit  | t <sub>amb</sub> =-60 ··· +50 °C<br>t <sub>amb</sub> = 100 °C   |  |  |  |
|----------------------------|------------------|------------|----------|-----------------------------------------------------------------|--|--|--|
| maximaler<br>Z-Strom       | IZmax            | 33<br>11   | mA<br>mA |                                                                 |  |  |  |
| minimaler<br>Z-Strom       | IZmin            | 3          | mA       | $t_{amb} = -60 +100 °C$                                         |  |  |  |
| Gesamtver-<br>lustleistung | Ptot             | 300<br>100 | mW<br>mW | $t_{amb} = -60 \dots +50  ^{\circ}C$ $t_{amb} = 100  ^{\circ}C$ |  |  |  |


## Elektrische Kennwerte

| Kenngrößen                                        | Kurz-<br>zei-<br>chen     | Werte              |                     |       |         |         | Ein-  | Meßbedingungen |                       |
|---------------------------------------------------|---------------------------|--------------------|---------------------|-------|---------|---------|-------|----------------|-----------------------|
|                                                   |                           | D818A              | D818B               | D818W | D818G   | D818D   | D818E | heit           |                       |
| Z-Spannung                                        | $\mathbf{u}_{\mathbf{z}}$ | 9-10,8             | 7,2-9               |       | . *     | 7,65-10 | ,35   | V              | Iz=10 mA              |
| Diffe-<br>rentieller<br>Widerstand                | rz                        | 25                 | 25                  | 25    | 25      | 25      | 25    | Ohm            | Iz=10 mA              |
| Z-Span-<br>nungstole-<br>ranz                     | ΔUZ                       | +20                | -20                 |       |         | ±15     |       | %              | I <sub>Z</sub> =10 mA |
| Temperatur-<br>koeffi-<br>zient der<br>Z-Spannung | TKUZ                      | 2x10 <sup>-4</sup> | -2x10 <sup>-4</sup> | ±1x10 | 4 ±5x10 | 5 ±2x10 | ±1x10 | -5             | I <sub>Z</sub> =10 mA |

N

Die folgenden Kurvendarstellungen sind typische Verläufe und tragen nur informativen Charakter.

Durch die Ziffern 1 und 3 und die mögliche Streubreite auf der Basis von 95 % der Bauelemente dargestellt.



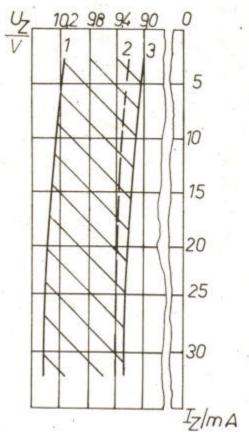



Bild 2: Durchbruchkennlinie des Bild 3: Durchbruchkennlinie des Referenzelementes D 818 A bei  $t_{amb} = 30$  °C

Referenzelementes D 818 A bei t<sub>amb</sub> = -60 C

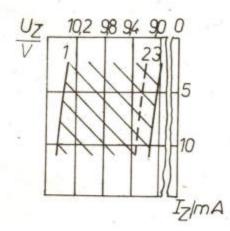
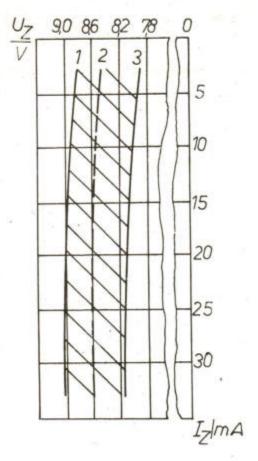




Bild 4: Durchbruchkennlinie des Referenz-elementes D 818 A bei tamb = 100 °C



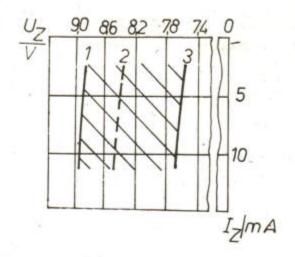



Bild 6: Durchbruchkennlinie des Referenzelementes D 818 B bei t<sub>amb</sub> = 100 °C

Bild 5: Durchbruchkennlinie des Referenzelementes D 818 B bei t<sub>amb</sub> = 30 °C

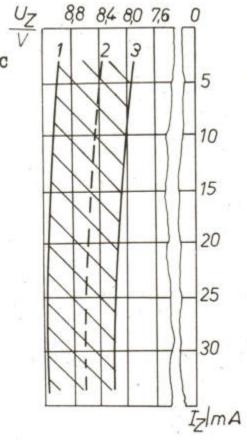



Bild 7: Durchbruchkennlinie des Referenzelementes D 818 B bei t<sub>amb</sub> = -60 °C

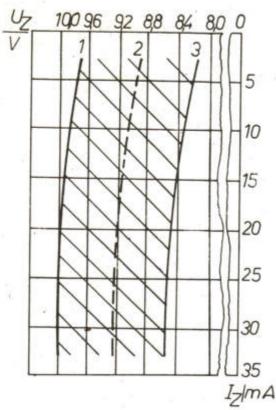



Bild 8: Durchbruchkennlinie des Referenzelementes D 818 W bei t<sub>amb</sub> = 30 °C

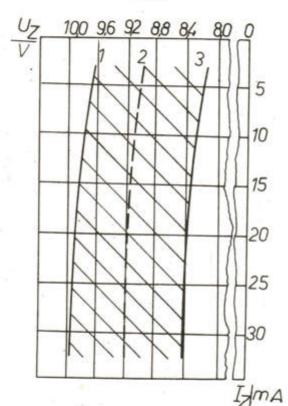



Bild 10: Durchbruchkennlinie des Referenzelementes D 818 W bei t<sub>amb</sub> = -60 °C

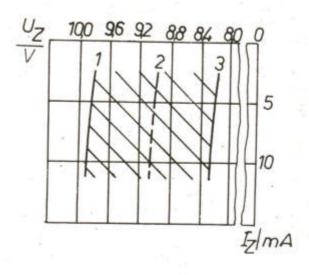



Bild 9: Durchbruchkennlinie des Referenzelementes D 818 W bei t<sub>amb</sub> = 100 °C

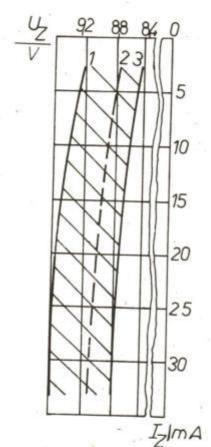
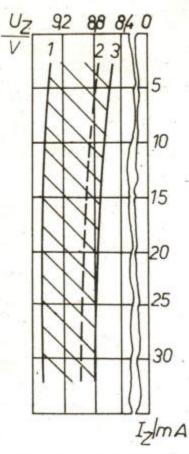




Bild 11: Durchbruchkennlinie des Referenzelementes D 818 G bei t<sub>amb</sub> = 30 °C



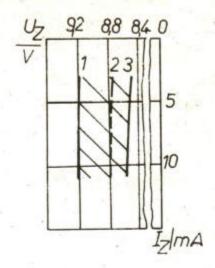
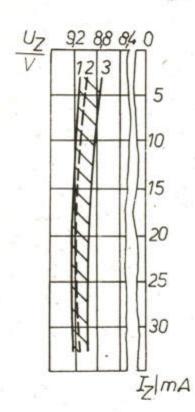




Bild 13: Durchbruchkennlinie des Referenzelementes D 818 G bei tamb = 100 C

Bild 12: Durchbruchkennlinie des Referenzelementes D 818 G bei t<sub>amb</sub> = -60 °C



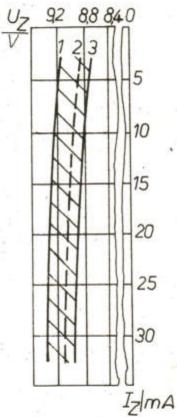



Bild 14: Durchbruchkennlinie Bild 15: Durchbruchkennlinie des des Referenzelementes D 818 D bei tamb = 30 C

Referenzelementes D 818 D bei tamb = -60 °C

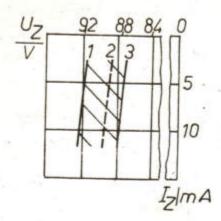
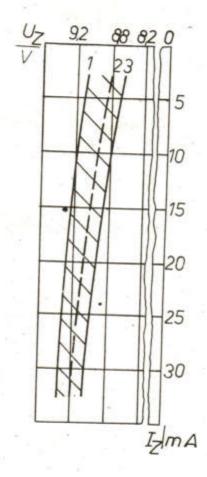




Bild 16: Durchbruchkennlinie des Referenzelementes D 818 D bei tamb = 100 C



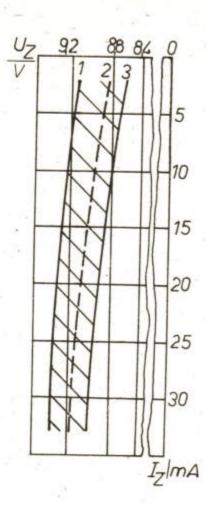



Bild 17: Durchbruchkennlinie des Referenzelementes D 818 E bei t<sub>amb</sub> = -60 °C

Bild 18: Durchbruchkennlinie des Referenzelementes D 818 E bei t<sub>amb</sub> = 30 °C

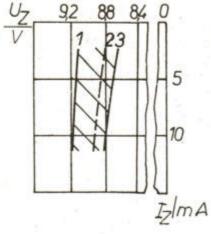



Bild 19: Durchbruchkennlinie des Referenzelementes D<sub>0</sub>818 E bei t<sub>amb</sub> = 100 °C

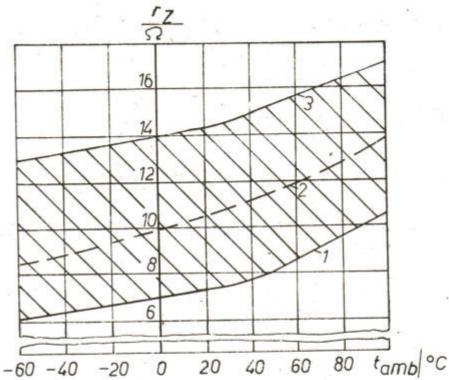



Bild 20: Abhängigkeit des Z-Widerstandes von der Umgebungstemperatur ( $I_Z$  = 10 mA)

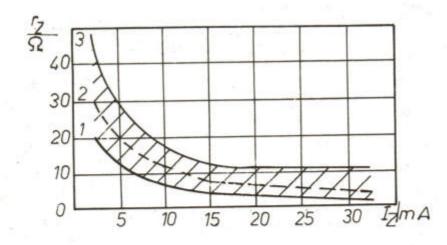



Bild 21: Abhängigkeit des Z-Widerstandes vom Z-Strom

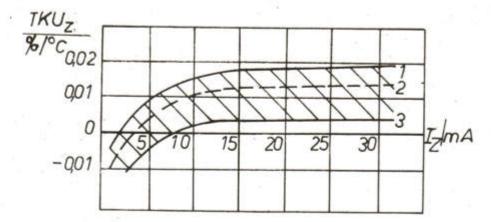



Bild 22: Abhängigkeit des Temperaturkoeffizienten der Z-Spannung des Referenzelementes D 818 A vom Z-Strom

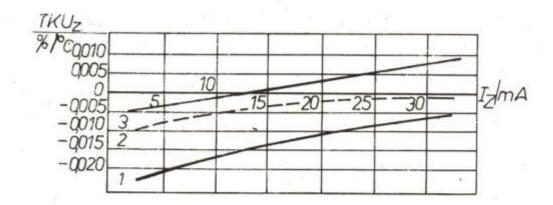



Bild 23: Abhängigkeit des Temperaturkoeffizienten der Z-Spannung des Referenzelementes D 818 B vom Z-Strom

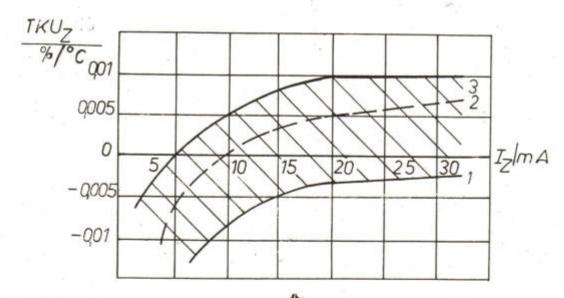



Bild 24: Abhängigkeit des Temperaturkoeffizienten der Z-Spannung des Referenzelementes D 818 V vom Z-Strom

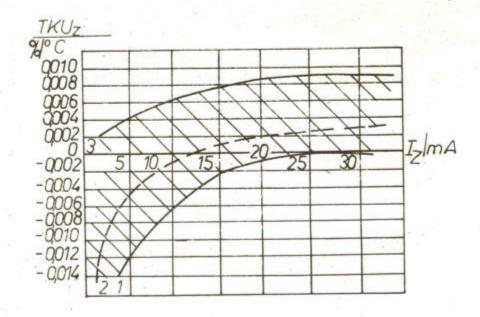



Bild 25: Abhängigkeit des Temperaturkoeffizienten der Z-Spannung des Referenzelementes D 818 G vom Z-Strom

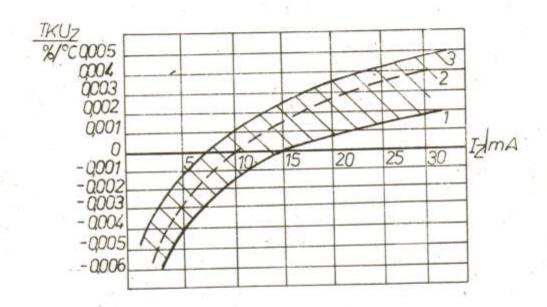



Bild 26: Abhängigkeit des Temperaturkoeffizienten der Z-Spannung des Referenzelementes D 818 D vom Z-Strom

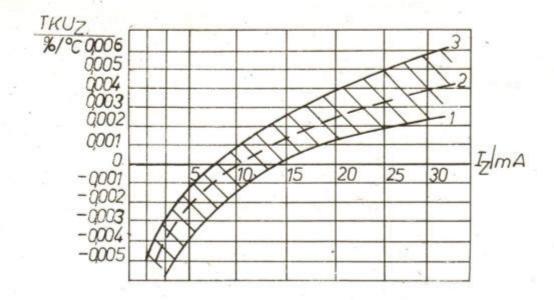



Bild 27: Abhängigkeit des Temperaturkoeffizienten der Z-Spannung des Referenzelementes D 818 E vom Z-Strom

### Anwendungs- und Betriebshinweise

Das Löten der Anschlüsse ist in einer Entfernung von mindestens 5 mm vom Gehäuse zulässig.

Das Biegen der Anschlüsse ist in einer Entfernung von mindestens 2 mm vom Gehäuse mit einem Biegeradius von mindestens 1,5 mm zulässig.

Beim Einsatz als Spannungsstabilisator ist das Referenzelement entgegengesetzt zu der auf ihrem Gehäuse angegebenen Polarität zu polen.

#### Literatur

/1/ Polupravodnikovye diody Katalog Čast' 1 (Halbleiterdioden Katalog Teil 1), 1979, Elorg Moskva. S. 143

Die vorliegenden Datenblätter dienen ausschließlich der Information! Es können deraus keine Liefermöglichkeiten oder Produktionsverbindlichkeiten abgeleitet werden.
Änderungen im Sinne des technischen Fortschritts sind vorbehalten.



Herausgeber:

veb applikationszentrum elektronik berlin im veb kombinat mikroelektronik

DDR-1035 Berlin, Mainzer Straße 25 Telefon: 5 80 05 21, Telex: 011 2981; 011 3055