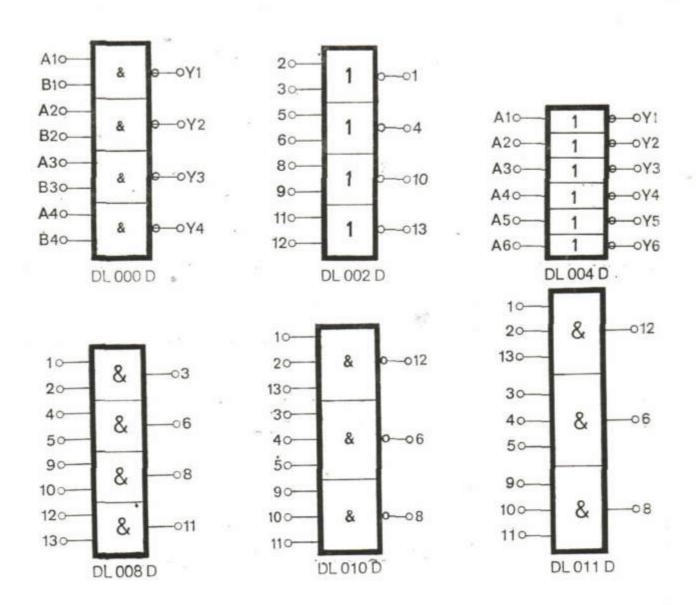
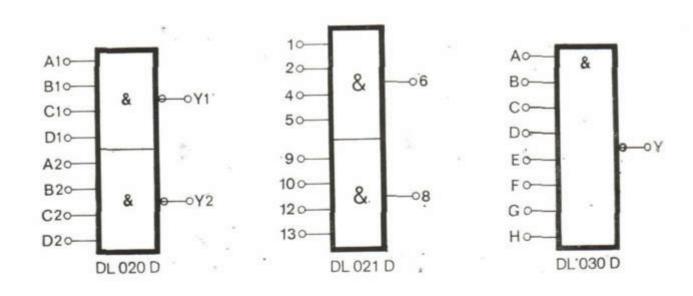
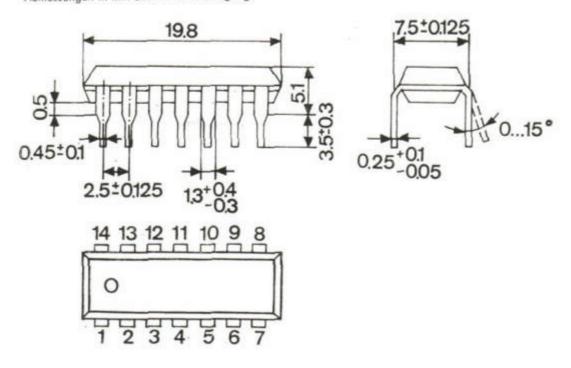


Information


DL 000 D


DL 000 D, DL 002 D, DL 004 D, DL 008 D, DL 010 D, DL 011 D, DL 020 D, DL 021 D, DL 030 D


DL 030 D Vorläufige technische Daten

Integrierte TTL-Schaltkreise der Low-Power-Schottky (LS)-Technologie

Тур	Funktion	Logische Funktion
DL 000 D	4 NAND mit je 2 Eingängen	Y = AB
DL 002 D	4 NOR mit je 2 Eingängen	$Y = \overline{AvB}$
DL 004 D	6 Inverter	$Y = \overline{A}$
DL 008 D	4 AND mit je 2 Eingängen	Y = AB
DL 010 D	3 NAND mit je 3 Eingängen	$Y = \overline{ABC}$
DL011 D	3 AND mit je 3 Eingängen	Y = ABC
DL 020 D	2 NAND mit je 4 Eingängen	$Y = \overline{ABCD}$
DL 021 D	2 AND mit je 4 Eingängen	Y = ABCD
DL 030 D	1 NAND mit je 8 Eingängen	$Y = \overline{ABCDEFGH}$

A, B - negierende Eingänge

Y – Ausgänge

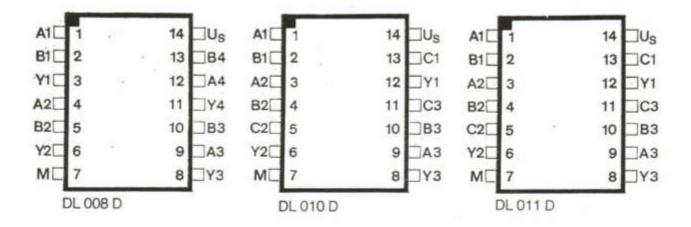
M - Masse

Us - Betriebsspannung

A, B - negierende Eingänge

Y - Ausgänge

M - Masse


Us - Betriebsspannung

A - negierende Eingänge

Y - Ausgänge

M - Masse

Us - Betriebsspannung

A, B – Eingänge Y – Ausgänge

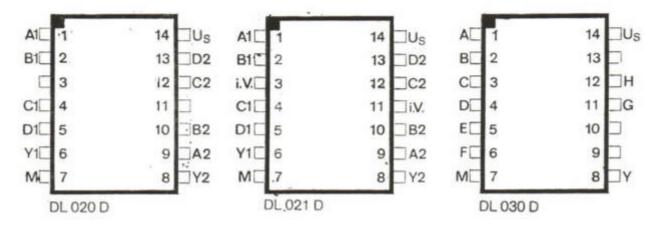
M - Masse

Us - Betriebsspannung

A, B, C-negierende Eingänge

Y - Ausgänge

M - Masse


Us - Betriebsspannung

A, B, C - Eingänge

Y – Ausgänge

M - Masse

Us - Betriebsspannung

A, B, C, D - negierende Eingänge

Y – Ausgänge

M - Masse

Us - Betriebsspannung

Anschluß 3 und 11 sind nicht belegt

A, B, C, D - Eingänge

Ausgänge

M - Masse

Us - Betriebsspannung

Anschluß 3 und 11 sind nicht belegt

A, B, C, D,

E, F, G, H - negierende Eingänge

Y - Ausgänge

M - Masse

Us - Betriebsspannung

Anschluß 9, 10 und 13 sind nicht belegt

Gehäuse:

14-poliges DIL-Plastgehäuse

Bauform:

21.2.1.2.14 nach TGL 26713

Masse:

10

Typstandard:

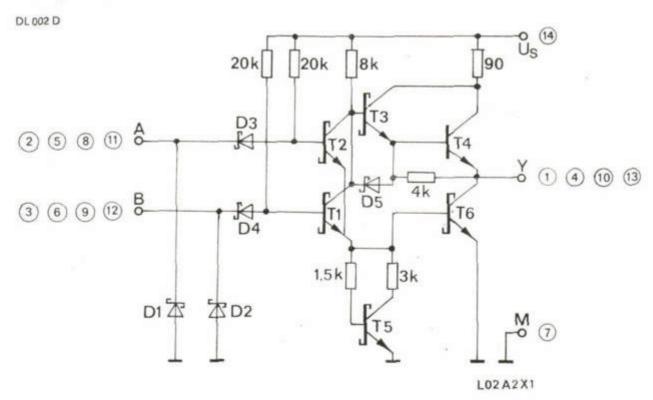
TGL 39865

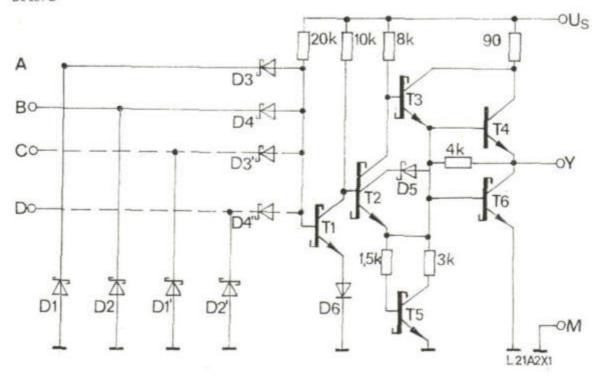
Internationaler Vergleichstyp:

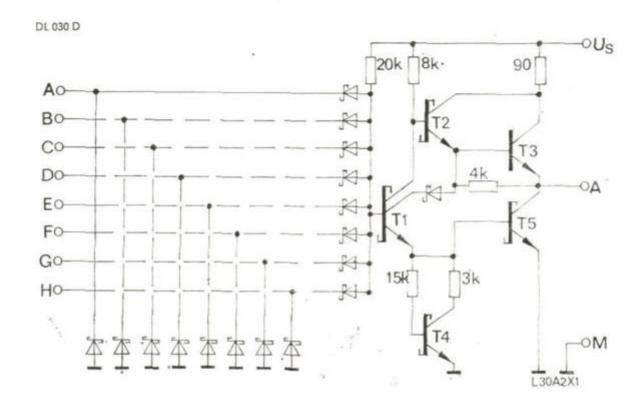
DL 010 D, DL 020 D, DL 030 D

DL 000 D \(\hightarrow \text{SN 74 LS 00} \)

Betriebsbedingungen			min.	typ.	max.	
Betriebsspannung		Us	4,75	5	5,25	V
H-Ausgangsstrom		—Іон		25	400	μА
L-Ausgangsstrom		lou			8	mA
Umgebungstemperatur		ϑ_a	0		+70	°C
Grenzwerte, gültig für den Betriebstemperaturber	reich					
			min.	typ.	max.	
Betriebsspannung		Us	0		7	V
Eingangsspannung für Emittereingänge		Uı			5,5	V
Statische Kennwerte ($\theta_a=0+70^{\circ}$ C, Us = 5 V))					
			min.		max.	
H-Eingangsspannung		UiH	2			V
L-Eingangsspannung		Un			8.0	v
Eingangsclampingspannung $U_5 = 4,75 \text{ V}, -I_1 = 18 \text{ mA}$		—U _{IK}			1,5	V
H-Ausgangsspannung für DL 000 D, DL 002 D, DL 004 D,		UoH	2,7			V


11 - 475 V 11 - 0.6 V 1 - 400 - 4			
$U_S = 4.75 \text{ V}$, $U_{1L} = 0.8 \text{ V}$, $-I_{OH} = 400 \mu\text{A}$ für DL 008 D, DL 011 D, DL 021 D	2,7		٧
$U_5 = 4,75 \text{V}, U_{1\text{H}} = 2 \text{V}, -I_{OH} = 400 \mu \text{A}$			
L-Ausgangsspannung Uoi			
für DL 000 D, DL 002 D, DL 004 D, DL 010 D, DL 020 D, DL 030 D			
$U_5 = 4,75 \text{ V}, \ U_{1H} = 2 \text{ V}$ $I_{OL} = 8 \text{ mA}$		0,5	V
Iot = 4 mA		0,4	V
für DL 008 D, DL 010 D, DL 021 D			
$U_{S} = 4,75 V, \ U_{1L} = 0,8 V \ I_{OL} = 8 mA$		0,5	V
I _{OL} = 4 mA		0.4	٧
Flußspannung der Eingangsdiode Ui		1,5	V
$U_5 = 4,75 \text{ V}, -I_1 \approx 18 \text{ mA}$			
H-Eingangsstrom I _{IH}			
$U_{S} = 5,25 \text{ V}, \ U_{1H} \approx 2,7 \text{ V}$		20	μA
$U_{IH} = 7.0 \text{ V}$		100	μA
L-Eingangsstrom —I _{IL}		400	μA
$U_{5}=5,25V,~U_{1L}\approx0.4V$			
Ausgangskurzschlußstrom¹) —Ios	20	100	mA
$U_S = 5,25 \text{ V}$			
Stromaufnahme des Schaltkreises bei H am Ausgang			
$U_5 = 5,25 \text{ V}, \ U_{1L} \approx 0 \text{ V}$ DL 00	10 D	1,6	mA
DL 00	12 D	3,2	mA
DL 00	14 D	2,4	mA
DL 01	0 D	1,2	mA
DL 02	0 D	0,8	mA
DL 03	10 D	0,5	mA
$U_S = 5,25 \text{ V}, \ U_{1L} \approx 0 \text{ V}, \ U_{1H} = 4,5 \text{ V}$ DL 00	08 D	4,8	mA
DL 01	11 D	3,6	ra A
DL 02	21 D	2,4	mA
Stromaufnahme des Schaltkreises bei L am Ausgang			
$U_{5} = 5.25 \text{ V}, \ U_{1H} = 4.5 \text{ V}$ DL 00	00 D	4,4	mA
DL 00	04 D	5,6	mA
DL 01	10 D	3,3	mA
DL 02	20 D	2,2	mA
DL 03	30 D	1,1	mA
$U_5 = 5,25 \text{ V}, \ U_{1H} = 4,5 \text{ V}, \ U_{1L} = 0 \text{ V}$	02 D	5,4	mA
DL 00	08 D	8,8	mA
DL 0	11 D	6,6	mA
DL 02	21 D	4,4	mA


Dynamische Kennwerte ($\vartheta_a = 25$ °C, U₅ = 5 V)


		min.	max.	
$Verzögerungszeit \ für \ L \to H$	tplH			
Übergang am Ausgang				
für DL 000 D, DL 004 D, DL 008 D, DL 010 D, DL 011 D,				
DL 020 D, DL 021 D, DL 030 D				
$C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega$			15	ns
für DL 002 D				
$C_L = 1 pF$, $R_L = 2 k\Omega$			15	ns
Verzögerungszeit für $H \rightarrow L$	tpHL			
Übergang om Ausgang				
für DL 000 D, DL 004 D, DL 010 D, DL 020 D				
$C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega$			15	ns
DL 008 D, DL 011 D, DL 021 D, DL 030 D				
$C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega$			20	ns
DL 002 D				
$C_L = 1 pF$, $R_L = 2 k\Omega$			15	ns

Bestellbezeichnung: Schaltkreis DL 000 D

Schaltungen der Gatter

VEB Halbleiterwerk Frankfurt/Oder

Leitbetrieb im VEB Kombinat Mikroelektronik

DDR 1200 Frankfurt (Oder) - Postfach 379 - Telefon 460 - Telex 016 252

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie, Telefon: 2180