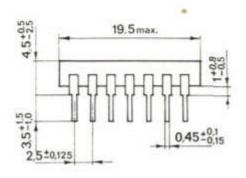
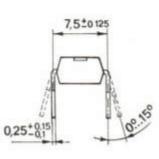
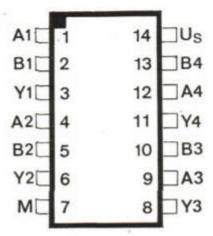
mikroelektronik

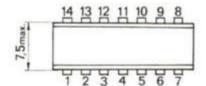
Information




DL 003 D

Vorläufige technische Daten


Integrierter TTL-Schaltkreis der Low-Power-Schottky (LS)-Technologie. Der Schaltkreis DL 003 D besteht aus 4 NAND-Gattern mit je zwei Eingängen und offenem Kollektorausgang.


Abmessungen in mm und Anschlußbelegung

21, 2, 1, 2, 14 TGL 26713

A, B negierende Eingänge

Y Ausgänge

M Masse

U_s Betriebsspannung

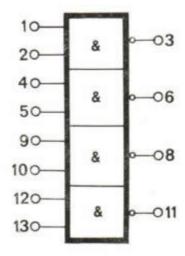
Gehäuse: 14poliges DIL-Plastgehäuse

Masse: ≤1 g

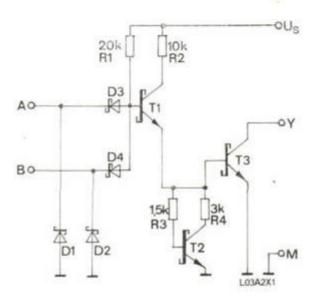
Internationaler Vergleichstyp: SN 74 LS 03

Typstandard: TGL 39865

Betriebsbedingungen:


Betriebsspannung H-Ausgangsspannung L-Ausgangsstrom Umgebungstemperatur

	min.	typ.	max.		
U _B	4,75	5	5,25	V	
Uon			5,5	V	
los.			8	mA	
ϑ_n	0		+70	°C	


Grenzwerte, gültig für Betriebstemperaturbereich

			min.		max.	
Betriebsspannung		Us	0		7	V
Eingangsspannung		Ur			7	V
Ausgangsspannung für offene Kollektorausgänge		Uon			7	٧
Betriebstemperaturbereich		ϑ_n	0		+70	°C
Statische Kennwerte ($\theta_a = 0 + 70^{\circ}\text{C}$)						
			min.		max.	
Eingangsclampingspannung $U_8 = 4,75 \text{ V}, -I_1 = 18 \text{ mA}$	*	$-U_{1K}$			1,5	V
H-Ausgangsstrom						
$U_{\rm s} = 4,75 V, \ U_{\rm ort} = 5,5 V$ $U_{\rm tr.} = 0,8 V$		lon			100	μA
L-Ausgangsspannung $U_{\rm s} = 4,75 \ V, \ U_{\rm BH} = 2 \ V$		$U_{\rm or}$				
$I_{\rm OL}=8~mA$					0,5	V
$I_{\rm GL}=4$ mA					0,4	V
H-Eingangsstrom		1111				
$U_8 = 5,25 V, \ U_{111} = 2,7 V$					20	μA
$U_{\rm IH}=7.0~V$				*	100	μA
L-Eingangsstrom $U_8=5,25\ V,\ U_{1L}=0,4\ V$		—I ₁₁			400	μA
Stromaufnahme des IS		Isn			1,6	mA
bei H am Ausgang						
$U_8 = 5,25 \text{ V}, \ U_{11.} = 0 \text{ V}$						
Stromaufnahme des IS		Ist.			4,4	mA
bei Lam Ausgang						
$U_8 = 5,25 \text{ V}, \ U_{111} = 4,5 \text{ V}$						
Verzögerungszeit		tran			32	ns
L→ H Übergang am Ausgang						
$C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega$					00	
Verzögerungszeit H→ L Übergang am Ausgang		tenu			28	ns
$C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega$						
and half with a reserve						

$\textbf{Logische Funktionen} \ \ Y = \overline{AB}$

Schaltung eines Gatters

Bestellbezeichnung: Integrierter Schaltkreis DL 003 D TGL 39 865

III-18-149 LG 140-6-83

veb halbleiterwerk frankfurt/oder leitbetrieb im veb kombinet mikroelektronik

DDR-1200 Frankfurt (Oder), Postfach 379 Telefon: 460, Telex: 016 252

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie, Telefon: 2180