mikroelektronik

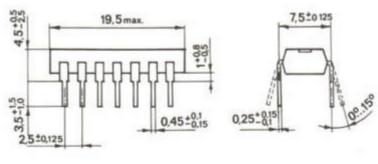
Information

DL 014 D DL 132 D

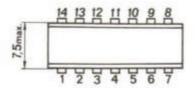
Internationale Vergleichstypen: SN 74LSO14 N SN 74LS132 N

Schaltkreise in Low-power-Schottky-Technologie

DL 0 14 D 6 Schmitt-Trigger-Inverter


 $Y = \overline{A}$

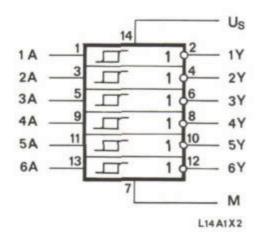
DL 132 D 4 Schmitt-Trigger-NAND-Gatter mit je 2 Eingängen

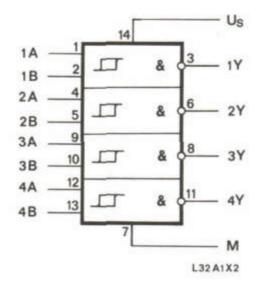

 $Y = \overline{AB}$

Vorläufige technische Daten

Abmessungen in mm und Anschlußbelegung:

21.2.1.2.14 TGL 26713




Gehäuse: DIL-Plast

Bauform: 21.2.1.2.14 nach TGL 26 713

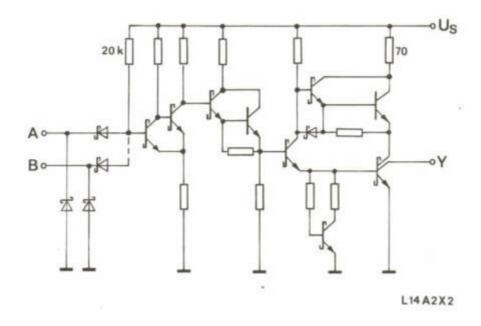
Masse: ≦ 1,5 g

Logisches Schaltbild:

Grenzwerte, gültig für den Betriebstemperaturbereich:

		min.	max.	
Betriebsspannung	Us	0	7	V
Eingangsspannung für Diodeneingänge	Uı		7	V
Betriebstemperaturbereich	ϑ_{a}	0	+70	°C
Betriebsbedingungen:				
Betriebsspannung	Us	4,75	5,25	V
Umgebungstemperatur	ϑ_a	0	+70	°C
H-Ausgangsstrom	$-I_{OH}$		400	μА
L-Ausgangsstrom	lou		8	mA

Statische Kennwerte ($\vartheta_a = 0 \text{ bis } +70^{\circ}\text{C}$):


Schaltschwelle für U₁: L → H		min.	max.	
$U_S = 5 \text{ V}$	U_{T+}	1,4	1,9	V
Schaltschwelle für $U_1: H \rightarrow L$ $U_S = 5 V$	U _{T-}	0,5	1,0	V
$\begin{aligned} & \text{Hysterese } (U_{T+} - U_{T-}) \\ & U_S = 5 \text{ V} \end{aligned}$	$\triangle \; U_T$	0,4		V
Eingangsclampingspannung $U_S = 4,75 \text{ V}$ $-I_I = 18 \text{ mA}$	$-U_{1K}$		1,5	٧
H-Ausgangsspannung $U_S = 4,75 \text{ V}$ $U_{IL} = 0,5 \text{ V}$ $-I_{OH} = 400 \text{ μA}$	U _{OH}	2,7		٧
L-Ausgangsspannung $U_S = 4,75 \text{ V}$ $U_{IH} = 1,9 \text{ V}$ $I_{OL} = 4 \text{ mA}$	U _{OL}		0,5 0,4	V V
H-Eingangsstrom $U_S = 5,25 \text{ V}$ $U_{IH} = 7 \text{ V}$	I _{IH}		20 100	μ Α μ Α
L-Eingangsstrom $U_S = 5,25 \text{ V}$ $U_{IL} = 0,4 \text{ V}$	$-I_{IL}$		360	μΑ
Ausgangskurzschlußstrom ¹) $U_S = 5,25 \text{ V}$	-l _{os}	20	100	mA
Stromaufnahme bei H am Ausgang $U_S = 5,25 \text{ V}, U_{IL} = 0 \text{ V}$ $DL \ 0.014 \ D$ $DL \ 1.32 \ D$	I _{SH}		16 11	mA mA
Stromaufnahme bei L am Ausgang $U_S = 5,25 \text{ V}, U_{IH} = 4,5 \text{ V}$ DL 014 D DL 132 D	I _{SL}		21 14	mA mA

Nicht mehr als 1 Ausgang gleichzeitig. Dauer des Kurzschlusses < 1 sec.

Dynamische Kennwerte ($\vartheta_a = 25^{\circ}C - 5 \text{ K, U}_S = 5 \text{ V}$):

	m	in. max.	
Signalverzögerungszeit für Übergang auf H am Ausgang $C_L = 15 \text{ pF}$ $R_L = 2 \text{ k}\Omega$	t _{pLH}	22	ns
Signalverzögerungszeit für Übergang auf L am Ausgang $C_L = 15 \text{ pF}$ $R_L = 2 \text{ k}\Omega$	$t_{ m pHL}$	22	ns

Schaltung eines Schmitt-Triggers:

Bestellbezeichnung: Integrierter Schaltkreis DL 014 D

Ag 05/043/83

veb halbleiterwerk frankfurt/oder leitbetrieb im veb kombinet mikroelektronik

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie, Telefon: 2180