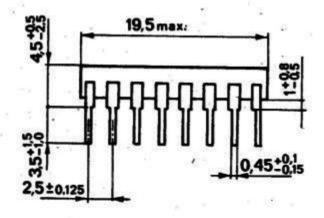
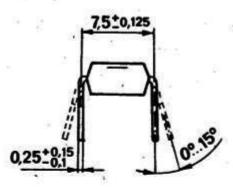
mormation

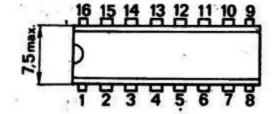
DL 251 D

Vergleichstyp: SN 74 LS 251 N

1/85

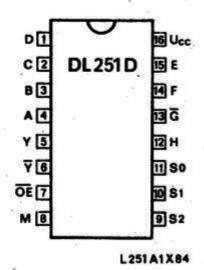

vorläufige technische Daten


Hersteller: VEB Halbleiterwerk Frankfurt (Oder)

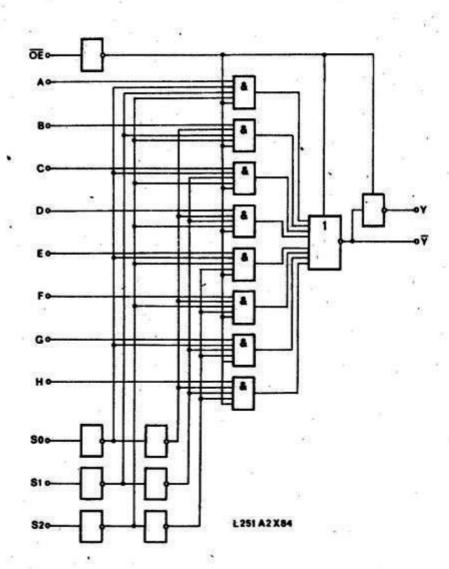

8 auf 1-Multiplexer DL 251 D

Gehäuse: 16poliges DIL-Plastgehäuse

Bauform: 21.1.1.2.16



21.1.1.2.16 TGL 26713


Anschlußbelegung:

A bis H: Dateneingänge S0, S1, S2: Adresseingänge

OE: Output Enable Y, ₹: Ausgänge

Schaltungsbeschreibung und logische Funktion:

Funktionstabelle:

Eingänge Adresse				Ausgänge			
				ŌĒ	Υ	▽	20
S2	S1	S0	414		. Williams		'
X	X	X		н	Z	Z	
L	L	L		L	Α	Ā	
L	L	н	520	L	В	Ē	
L	н	L		L	С	Ē	
L	H	Н		L	D	Ō٠	
н	L	L		L	E	Ē	
н	L	н		L	F	F	
н	Н	L		L	G	Ğ	
н	н	н	1.	. · L	Н	Ĥ	

Der Schaltkreis DL 251 D ist ein 8 auf 1-Multiplexer mit 3-STATE-Ausgängen. Mit der Adressinformation an S0, S1 und S2 wird über die Adressgatter und über die Schottky-diodenmatrix jeweils ein Eingang des 8fach-Odergatters freigegeben, die restlichen Dateneingänge bleiben gesperrt.

Die Dateninformation des adressierten Einganges liegt dann negiert am Ausgang \(\bar{Y} \) an und wird über ein zweites Ausgangsgatter nicht negiert an den Ausgang Y gegeben. Beide Ausgänge lassen sich über OE in den hochohmigen Zustand Z schalten.

Betriebsbedingungen:

		min.	typ.	max.	
Betriebsspannung	Ucc	4,75	5	5,25	٧
Umgebungstemperatur	ϑ _a .	0		70	°C
H-Ausgangsstrom	−I _{OH}			2,6	mA
L-Ausgangsstrom	loL			. 8	mA
H-Eingangsspannung	U _{IH}	2			V
L-Eingangsspannung	UIL			0,8	V

Statische Kennwerte (gültig für $\vartheta_a = 0...70$ °C):

Statische Kennwerte (guitig für $v_a = 070$	C).		35	-
		min.	max	
Eingangsclampingspannung U _{CC} = 4,75 V -I _I = 18 mA	-U _{IK}	****	1,5	v
H-Ausgangsspannung U _{CC} = 4,75 V	U _{OH}			
U _{IH} = 2,00 V U _{IL} = 0,8 V -I _{OH} = 2,6 mA		2,4		V
L-Ausgangsspannung U _{CC} = 4,75 V	UoL	ä	¥ 8	
$U_{IL} = 2.0 \text{ V}$ $U_{IL} = 0.8 \text{ V}$ $I_{OL} = 4 \text{ mA}$	· ·	#1 #	0,4	V
$I_{OL} = 8 \text{ mA}$	e e e	7 B	0,5	٧.
H-Eingangsstrom U _{CC} = 5,25 V U _{IH} = 2,7 V	lin		20 100	μ Α μ Α
L-Eingangsstrom $U_{CC} = 5,25 \text{ V}$ $U_{IC} = 0,4 \text{ V}^2)$	-I _{IL}		360	μΑ
Ausgangskurzschlußstrom U _{CC} = 5,25 V ¹)	-l _{os}	30	130	mA
Ausgangsstrom im hochohmigen Zustand U _{CC} = 5,25 V U _{IH} = 2,0 V	l _{OZH}		20	μΑ
U _{OH} = 2,7 V U _{IL} = 0,8 V U _{OL} = 0,4 V	*		20	μΑ

Nicht mehr als 1 Ausgang kurzschließen. Dauer des Kurzschlusses < 1 s.

²) Der jeweils zu messende Dateneingang muß entsprechend der Logik durch S0, S1, S2 adressiert werden.

Dynamische Kennwerte (gültig für $\theta_a = 25 \,^{\circ}\text{C} - 5 \,\text{K}$, $U_{CC} = 5 \,\text{V}$):

von .	von	nach	max.		4 2
Verzögerungszeit für LH-Übergang am Ausgang	S0 S1 S2	Y	t _{pLH}	100	
$U_{IL} = 0 \text{ V}$ $U_{IH} = 4.5 \text{ V}$ $R_L = 500 \Omega$ $C_L = 50 \text{ pF}$		8.		45	ns
Verzögerungszeit für HL-Übergang am Ausgang	S0 S1 S2 ¹)	Y	t _{pHL}	45	ns
•	A bis H	Y	t _{pLH}	28 28	ns ns
F	A bis H	₹	t _{pLH} t _{pHL}	18 17	ns ns
Freigabezeit zu H-Pegel am Ausgang Freigabezeit zu L-Pegel am Ausgang	OE OE OE	Y Y V	t _{pZH} t _{pZL} t _{pZH} t _{pZL}	45 40 27 40	ns ns ns
Verzögerungszeit für Übergang von H-Pegel zu hochomigen Zustand am Ausgang U _{IL} = 0 V	ŌĒ .	Y	t _{pHZ}	45	ns
$U_{IH} = 4.5 \text{ V}$ $R_L = 500 \Omega$ $C_L = 50 \text{ pF}$	ŌĒ	₹		55	ns
Verzögerungszeit für Übergang von L-Pegel zu hochohmigen Zustand	ŌĒ	Ý	t _{pLZ}	25	ns
am Ausgang	ŌĒ	₹ .	t _{pLZ}	25	ns

¹) Die Dateneingänge A, B, C, D, E, F, G sind auf L-Pegel und der Dateneingang H auf H-Pegel zu legen.

Nebenkenngrößen:

		min.	max.	178
Stromaufnahme des Schaltkreises	s bei			. 1
aktiven Ausgängen	,	Icc		
$U_{CC} = 5,25 \text{ V}$	10	• •	10	mA
U _{IH} = 4,5 V			* 5	
$U_{\rm IL}=0~{\rm V}^3)$			28	
Stromaufnahme des Schaltkreises	s bei	F 181 16		7.0
hochohmigen Zustand an den Aus	sgängen	Iccz		
$U_{CC} = 5,25 \text{ V}$		18 179	12	mA
$U_{iH} = 4,5 V^4)$	12	2	N.	

- 3) $\overline{OE} = LOW$, alle anderen Eingänge auf H-Pegel
- 4) alle Eingänge auf H-Pegel

Die vorliegenden Datenblätter dienen ausschließlich der Information! Es können daraus keine Liefermöglichkeiten oder Produktionsverbindlichkeiten abgeleitet werden. Anderungen im Sinne des technischen Fortschritts sind vorbeheiten.

Herausgeber

veb applikationszentrum elektronik berlin Im veb kombinet mikroslektronik

DDR-1035 Berlin, Mainzer Straße 25 Telefon: 5 80 05 21, Telex: 011 2981; 011 3055