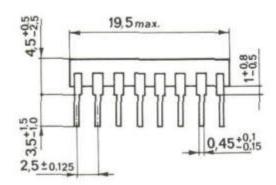
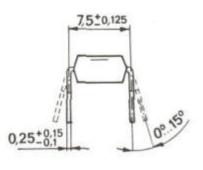
mikroelektronik

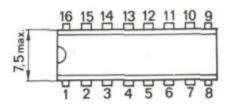
Information

DL 251 D

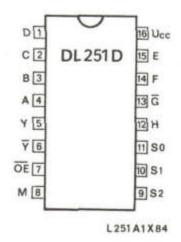

Vergleichstyp: SN 74 LS 251 N


8 auf 1-Multiplexer DL 251 D

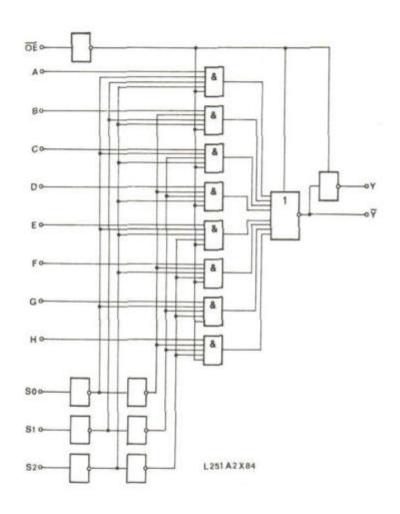
Vorläufige technische Daten


Gehäuse: 16poliges DIL-Plastgehäuse

Bauform: 21.1.1.2.16



21.1.1.2.16 TGL 26713



Anschlußbelegung:

A bis H: Dateneingänge S0, S1, S2: Adresseingänge OE: Output Enable Y, Ÿ: Ausgänge

Schaltungsbeschreibung und logische Funktion:

Funktionstabelle:

Eingänge		Aus	gänge		
Adr	esse		- ŌĒ	Υ	Ÿ
S2	S1	S0			1
X	X	X	Н	Z	Z
L	L	L	L	A	Ā
L	L	Н	L	В	B
L	Н	L	L	C	\overline{C}
L	Н	Н	L	D	D
Н	L	L	L	E	Ē
Н	L	Н	L	F	F
Н	Н	L	L	G	G
Н	Н	Н	L	Н	Ħ

Der Schaltkreis DL 251 D ist ein 8 auf 1-Multiplexer mit 3-STATE-Ausgängen. Mit der Adressinformation an S0, S1 und S2 wird über die Adressgatter und über die Schottky-diodenmatrix jeweils ein Eingang des 8fach-Odergatters freigegeben, die restlichen Dateneingänge bleiben gesperrt.

Die Dateninformation des adressierten Einganges liegt dann negiert am Ausgang \overline{Y} an und wird über ein zweites Ausgangsgatter nicht negiert an den Ausgang Y gegeben. Beide Ausgänge lassen sich über OE in den hochohmigen Zustand Z schalten.

Betriebsbedingungen:

		min.	typ.	max.	
Betriebsspannung	U_{cc}	4,75	5	5,25	V
Umgebungstemperatur	ϑ_a	0		70	°C
H-Ausgangsstrom	$-I_{OH}$			2,6	mA
L-Ausgangsstrom	IOL			8	mA
H-Eingangsspannung	UIH	2			V
L-Eingangsspannung	UIL			0,8	V

Statische Kennwerte (gültig für $\vartheta_a = 0 \dots 70$ °C):

		min.	max	τ.
Eingangsclampingspannung $U_{CC} = 4,75 \text{ V}$ $-1_I = 18 \text{ mA}$	$-U_{IK}$		1,5	٧
H-Ausgangsspannung $U_{CC} = 4,75 \text{ V}$ $U_{IH} = 2,00 \text{ V}$ $U_{IL} = 0,8 \text{ V}$ $-I_{OH} = 2,6 \text{ mA}$	U _{OH}	2,4		٧
L-Ausgangsspannung $U_{CC} = 4,75 \text{ V}$ $U_{IH} = 2,0 \text{ V}$ $U_{IL} = 0,8 \text{ V}$ $I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$	U _{OL}		0,4	V V
H-Eingangsstrom $U_{CC} = 5,25 \text{ V}$ $U_{IH} = 2,7 \text{ V}$	I _{IH}		20 100	μΑ μΑ
L-Eingangsstrom $U_{CC} = 5,25 \text{ V}$ $U_{IL} = 0,4 \text{ V}^2)$	$-I_{1L}$		360	μΑ
Ausgangskurzschlußstrom $U_{CC} = 5,25 \text{ V}^1$)	-I _{os}	30	130	mA
Ausgangsstrom im hochohmigen Zustand $U_{CC} = 5,25 \text{ V}$ $U_{IH} = 2,0 \text{ V}$ $U_{OH} = 2,7 \text{ V}$	I _{OZH}		20	μΑ
$U_{IL} = 0.8 \text{ V}$ $U_{OL} = 0.4 \text{ V}$			20	μΑ

Dynamische Kennwerte (gültig für $\vartheta_a = 25 \, ^{\circ}\text{C} - 5 \, \text{K}$, $U_{CC} = 5 \, \text{V}$):

von	von	nach	max.		
Verzögerungszeit für LH-Übergang am Ausgang	S0 S1 S2	Υ	t _{pLH}		
$U_{IL} = 0 \text{ V}$ $U_{IH} = 4.5 \text{ V}$ $R_L = 500 \Omega$ $C_L = 50 \text{ pF}$				45	ns
Verzögerungszeit für HL-Übergang am Ausgang	S0 S1 S2 ¹)	Υ	t _{pHL}	45	ns
	A bis H	Y	t _{pLH}	28	ns
		-	t_{pHL}	28	ns
	A bis H	Ÿ	t _{pLH}	18	ns
	5-		t _{pHL}	17	ns
Freigabezeit zu H-Pegel am Ausgang	ŌĒ	Υ	t_{pZH}	45	ns
Freigabezeit zu L-Pegel am Ausgang	ŌĒ	Y	t_{pZL}	40	ns
	ŌĒ	Y Y Y	t _{pZH}	27	ns
	ŌĒ	1000	t _{pZL}	40	ns
Verzögerungszeit für Übergang von H-Pegel zu hochomigen Zustand am Ausgang U _{IL} = 0 V	ŌĒ	Y	t _{pHZ}	45	ns
$U_{IH} = 4.5 \text{ V}$ $R_L = 500 \Omega$ $C_L = 50 \text{ pF}$	ŌĒ	Ÿ		55	ns
Verzögerungszeit für Übergang von L-Pegel zu hochohmigen Zustand	ŌĒ	Υ	t_{pLZ}	25	ns
am Ausgang	ŌĒ	Ÿ	t_{pLZ}	25	ns

¹) Die Dateneingänge A, B, C, D, E, F, G sind auf L-Pegel und der Dateneingang H auf H-Pegel zu legen.

Nebenkenngrößen:

		min.	max.	
Stromaufnahme des Schaltkreises bei aktiven Ausgängen $U_{CC} = 5,25 \text{ V}$ $U_{IH} = 4,5 \text{ V}$ $U_{IL} = 0 \text{ V}^3)$	Icc		10	mA
Stromaufnahme des Schaltkreises bei hochohmigen Zustand an den Ausgängen U _{CC} = 5,25 V U _{IH} = 4,5 V ⁴)	I _{CCZ}		12	mA

- Nicht mehr als 1 Ausgang kurzschließen. Dauer des Kurzschlusses < 1 s.
- ²) Der jeweils zu messende Dateneingang muß entsprechend der Logik durch S0, S1, S2 adressiert werden.
- 3) $\overline{\text{OE}} = \text{LOW}$, alle anderen Eingänge auf H-Pegel
- 4) alle Eingänge auf H-Pegel

Ag 05/044/

veb halbleiterwerk frankfurt/oder leitbetrieb im veb kombinat mikroelektronik DDR 1200 Frankfurt/Oder - Telefon 4 60 elektronik export-Import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie, Telefon: 2180