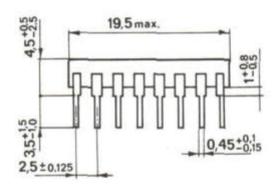
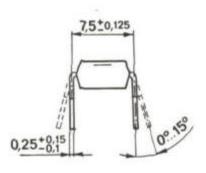
mikreektronik

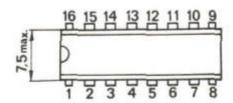
Information

DL 257 D

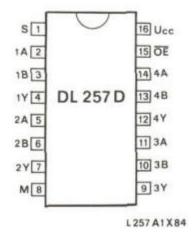

Vergleichstyp: SN 74 LS 257 N


Vierfach - 2 auf 1-Multiplexer DL 257 D

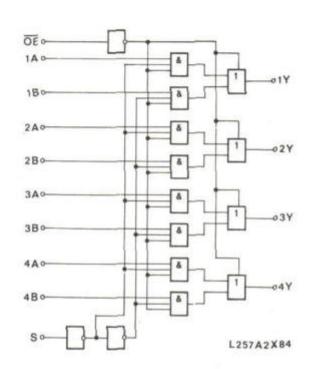
Vorläufige technische Daten


Gehäuse: 16poliges DIL - Plastgehäuse

Bauform: 21.1.1.2.16



21.1.1.2.16 TGL 26713


Anschlußbelegung:

S: Adresseingang A, B: Dateneingänge OE: Output Enable

Y: Ausgänge M: Masse

Logisches Schaltbild:

Schaltungsbeschreibung und logische Funktion:

Funktionstabelle des DL 257 D:

Eingäng	je	Ausgang
S	ŌĒ	Υ
X	Н	Z
L	L	Α
Н	L	В

Der Schaltkreis DL 257 D ist ein Vierfach-2 auf 1-Multiplexer mit 3-STATE-Ausgängen. Mit der Adressinformation an S wird über die Adressgatter und über die Schottky-diodenmatrix jeweils ein Eingang der 2fach Odergatter freigegeben, der andere wird gesperrt.

Die Dateninformation der somit adressierten Eingänge liegt dann nicht-negiert an den Ausgängen Y an.

Die Ausgänge lassen sich gemeinsam über OE in den hochohmigen Zustand Z schalten.

Betriebsbedingungen:

		min.	typ.	max.	
Betriebsspannung	Ucc	4,75	5	5,25	V
Umgebungstemperatur	ϑ_a	0		70	°C
H-Ausgangsstrom	$-I_{OH}$			2,6	mA
L-Ausgangsstrom	IOL			8	mA
H-Eingangsspannung	UiH	2			V
L-Eingangsspannung	UIL			0,8	V

Statische Kennwerte (gültig für $\vartheta_a = 0 \dots 70\,^{\circ}\text{C}$):

		min.	max.	
Eingangsclampingspannung $U_{CC} = 4,75 \text{ V}$ $-I_L = 18 \text{ mA}$	$-U_{IK}$		1,5	V
H-Ausgangsspannung $U_{CC} = 4,75 \text{ V}$ $U_{IH} = 2,0 \text{ V}$ $U_{IL} = 0,8 \text{ V}$ $-I_{OH} = 2,6 \text{ mA}$	U _{он}	2,4		V
L-Ausgangsspannung $U_{CC} = 4,75 \text{ V}$ $I_{OL} = 4 \text{ mA}$ $U_{IH} = 2,0 \text{ V}$ $U_{IL} = 0,8 \text{ V}$	UoL		0,4	٧
I _{OL} = 8 mA H-Eingangsstrom in Eingang S	Ĕ.		0,5	V
$U_{CC} = 5,25 \text{ V}$	IH		40	μΑ
$U_{IH} = 2.7 \text{ V}$ $U_{IH} = 7.0 \text{ V}$			200	μΑ
H-Eingangsstrom in Eingänge \overline{OE} , A, B $U_{CC} = 5,25 \text{ V}$ $U_{IH} = 2,7 \text{ V}$ $U_{IH} = 7,0 \text{ V}$	I _{IH}		20	μA μA
L-Eingangsstrom in Eingang S $U_{CC} = 5,25 \text{ V}$ $U_{IL} = 0,4 \text{ V}$	$-I_{IL}$		720	μΑ
L-Eingangsstrom in Eingängen \overline{OE} , A, B $U_{CC} = 5,25 V^2$) $U_{IL} = 0,4 V$	$-1_{\rm IL}$		360	μΑ
Ausgangskurzschlußstrom ¹) $U_{CC} = 5,25 \text{ V}$	-I _{os}	30	130	mA
Ausgangsstrom im hochohmigen Zustand $U_{CC} = 5,25 \text{ V}$ $U_{IH} = 2,0 \text{ V}$	I _{OZH}		20	μΑ
$U_{OH} = 2.7 \text{ V}$ $U_{OL} = 0.4 \text{ V}$ $U_{IL} = 0.8 \text{ V}$	lozL		20	μΑ

Nebenkenngrößen:

Stromaufnahme des Schaltkreises bei H-Pege	١.		
an allen Ausgängen	ICCH	10	
$U_{CC} = 5,25 \text{ V}$		10	mA
$U_{IL} = 0 \text{ V}$ $U_{IH} = 4,5 \text{ V}^3$)			
Stromaufnahme des Schaltkreises bei L-Pegel	rs.		
an allen Ausgängen	I _{CCL}	16	mA
Stromaufnahme des Schaltkreises bei			
hochohmigen Zustand an den Ausgängen	1 _{CCZ}	19	mA

Nicht mehr als 1 Ausgang gleichzeitig kurzschließen. Dauer des Kurzschlusses ≤ 1 s.

²) Der jeweils zu messende Dateneingang muß durch S adressiert werden.

³) Alle Eingänge, die keinen Einfluß auf den einzustellenden Zustand haben, sind auf 0 V zu legen.

	von	nach	ĺ	max.	
Verzögerungszeit für LH-Übergang am Ausgang $U_{IL} = 0 \text{ V}$ $U_{IH} = 4.5 \text{ V}$ $R_L = 500 \Omega$ $C_L = 50 \text{ pF}$	А, В	Υ	t _{pLH}	21	ns
Verzögerungszeit für HL-Übergang am Ausgang	A, B S S	Y Y Y	t_{pHL} t_{pLH} t_{pHL}	21 24 24	ns ns
Freigabezeit zu H-Pegel am Ausgang	ŌĒ	Y	t_{pZH}	30	ns
Freigabezeit zu L-Pegel am Ausgang	ŌĒ	Y	t_{pZL}	30	ns
Verzögerungszeit für Übergang von H-Pege zu hochohmigen Zustand am Ausgang $U_{IL}=0~V$ $U_{IH}=4,5~V$ $R_{L}=500~\Omega$ $C_{L}=50~pF$			t _{pHZ}	30	ns

ŌĒ

Ag 05/044/85

veb halbleiterwerk frankfurt/oder betrieb im veb kombinat mikroelektronik DDR 1200 Frankfurt/Oder – Telefon 4 60

Verzögerungszeit für Übergang von L-Pegel

zu hochohmigen Zustand am Ausgang

25

ns

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie

¹⁾ Die Dateneingänge A sind auf L-Pegel und die Dateneingänge B auf H-Pegel zu legen.