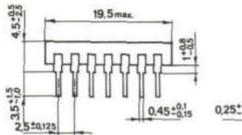
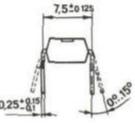
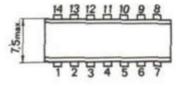
mikroektronk

Information

DL 295 D

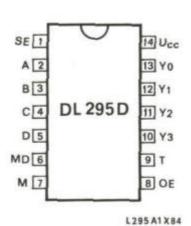

Vergleichstyp: SN 74 LS 295 N


4-bit-Schieberegister DL 295 D


Vorläufige technische Daten

Gehäuse: 14poliges DIL - Plastgehäuse

Bauform: 21.2.1,2.14



21.2.1.2.14 TGL 26713

Anschlußbelegung:

Y:

Ausgänge

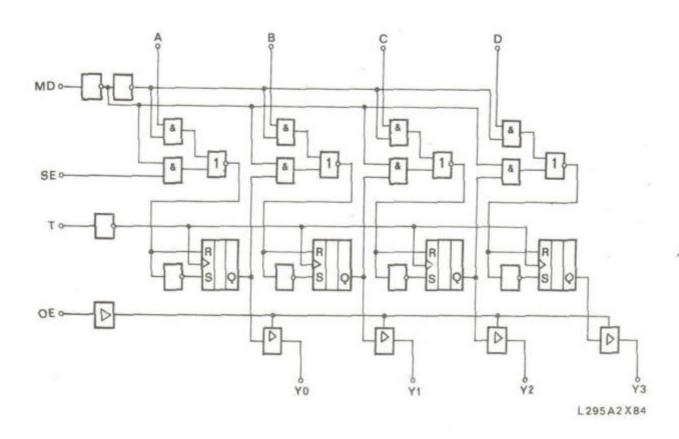
SE:

serieller Eingang

MD:

A, B, C, D,: Paralleleingänge

Mode-Eingang


OE:

Output Enable

T:

Takteingang

Logisches Schaltbild:

Schaltungsbeschreibung und logische Funktion:

Der Schaltkreis DL 295 D ist ein 4-bit-Schieberegister, das im Rechtsschiebebetrieb und bei entsprechenden externen Verbindungen im Linksschiebebetrieb eingesetzt werden kann. Ein paralleles Einschreiben der 4-bit-Information ermöglicht auch den Einsatz als 4-bit-Speicher im Parallelbetrieb.

Jedes der 4 taktflankengesteuerten RS-FF's wird von einer Torschaltung mit der einzuschreibenden Dateninformation angesteuert, die je nach Information an MD entweder vom Q'-Ausgang des vorhergehenden FF oder vom Paralleleingang angesteuert wird.

Für den Linksschiebebetrieb wird mit MD = H auf die Paralleleingänge geschaltet. Die Eingänge A, B, C müssen extern mit den Ausgängen Y1, Y2, Y3 verbunden werden, und der Eingang D wird zum seriellen Eingang der Schiebekette.

Die Ausgangsstufen liefern die Information der FF nichtnegiert an die Ausgänge, die sich über OE = L in den hochohmigen Zustand Z schalten lassen.

Eingänge							Ausgänge				
Output Enable	Mode	Takt	serieller Eingang	Parallel- eingänge							
OE	MD	Т	SE	Α	В	С	D	Y0	Y1	Y2	Y3
L	X	X	X	X	X	X	X	Z	Z	Z	Z
н	Н	Н	×	×	X	×	X	$Y_{0(t-1)}$	$Y_{1(t-1)}$	$Y_{2(t-1)}$	$Y_{3(t-1)}$
Н	Н	1	×	а	b	C	d	а	b	С	d
Н	Н	1	×	Y_1^{1})	Y21)	$Y_3^1)$	d	$Y_{1(t-1)}$	$Y_{2(t-1)}$	$Y_{3(t-1)}$	d
Н	L	Н	×	×	X	×	X	$Y_{0(t-1)}$	$Y_{1(t-1)}$	$Y_{2(t-1)}$	$Y_{3(t-1)}$
Н	L	1	н	×	X	X	X	H	$Y_{0(t-1)}$	$Y_{1(t-1)}$	Y _{2(t-1)}
Н	L	1	L	×	X	X	X	L	$Y_{0(t-1)}$	$Y_{1(t-1)}$	$Y_{2(t-1)}$

Funktionstabelle:

X: beliebiger Zustand

Z: hochohmiger Zustand

J: HL-Flanke

a, b, c, d,: statischer H- oder L-Pegel während der HL-Flanke

Y_(t-1): Ausgangszustand vor der letzten LH-Flanke

Linksschiebemodus, die Paralleleingänge A, B, C werden jeweils mit den Ausgängen Y1, Y2, Y3 verbunden. Der Paralleleingang D wird zum seriellen Eingang der Schiebekette.

Betriebsbedingungen:

		min.	typ.	max.	
Betriebsspannung	Ucc	4,75	5	5,25	V
Umgebungstemperatur	ϑ_{a}	0		70	°C
H-Ausgangsstrom	$-I_{OH}$			2,6	mΑ
L-Ausgangsstrom	loL			24	mA
H-Ausgangsspannung	UIH	2			V
L-Eingangsspannung	U_{1L}			0,8	V
Taktimpulsbreite	t_{WT}	25			ns
Voreinstellzeit	t_{SU}	20			ns
Haltezeit	t _h	20			ns

Statische Kennwerte (gültig für $\vartheta_a = 0 \dots 70$ °C):

		min.	max.	
Eingangsclampingspannung $U_{CC} = 4,75 \text{ V}$ $-I_{I} = 18 \text{ mA}$	$-U_{IK}$		1,5	V
H-Ausgangsspannung $U_{CC} = 4,75 \text{ V}$ $U_{IH} = 2,0 \text{ V}$ $U_{IL} = 0,8 \text{ V}$ $-I_{OH} = 2,6 \text{ mA}$	U _{он}	2,4		V
L-Ausgangsspannung $U_{CC} = 4,75 \text{ V}$ $U_{IH} = 2,0 \text{ V}$ $I_{OL} = 12 \text{ mA}$ $U_{IL} = 0,8 \text{ V}$	U _{OL}		0,4	V
l _{OL} = 24 mA H-Eingangsstrom	I _{IH}			
$U_{CC} = 5,25 \text{ V}$ $U_{1H} = 2,7 \text{ V}$	153		20	μА
$U_{1H} = 7.0 \text{ V}$			100	μΑ

		min.	max.	
L-Eingangsstrom ²) $U_{CC} = 5,25 \text{ V}$ $U_{IL} \approx 0,4 \text{ V}$	$-I_{IL}$		0,36	mA
Ausgangskurzschlußstrom ¹) U _{CC} = 5,25 V	-I _{os}	30	130	mA
Ausgangsstrom im hochohmigen Zustand $U_{CC} = 5,25 \text{ V}$ $U_{IH} = 2,0 \text{ V}$ $U_{OH} = 2,7 \text{ V}$ $U_{IL} \approx 0,8 \text{ V}$ $U_{OL} = 0,4 \text{ V}$	I _{OZH}		20	μΑ
Stromaufnahme des Schaltkreises bei aktiven Ausgängen $U_{CC} = 5,25 \text{ V}$ $U_{IH} = 4,5 \text{ V}$ $U_{IL} = 0 \text{ V}^3)$	Icc		29	mA
Stromaufnahme des Schaltkreises bei hochohmigen Zustand an den Ausgängen $U_{CC} = 5,25 \text{ V}$ $U_{IH} = 4,5 \text{ V}$ $U_{IL} = 0 \text{ V}^4)$	I _{CCZ}		33	mA

Nicht mehr als 1 Ausgang gleichzeitig kurzschließen. Dauer des Kurzschlusses < 1 s.

²) Für die Messung der Eingänge A, B, C, D ist MD auf H-Pegel zu legen. Für die Messung des Einganges SE ist MD auf L-Pegel zu legen.

³⁾ SE, MD, OE = HIGH, A, B, C, D = LOW, vor Messung HL-Flanke an T.

⁴⁾ SE, MD = HIGH; A, B, C, D, T, OE = LOW

Dynamische Kennwerte (gültig für $\vartheta_a = 25$ °C -5 K, $U_{CC} = 5$ V):

	von	nach		max.	
Verzögerungszeit für LH-Übergang am Ausgang $U_{IL}=0~V$ $U_{IH}=4,5~V$ $R_L=500~\Omega$ $C_L=50~pF$	Т	Υ	t _{pLH}	30	ns
Verzögerungszeit für HL-Übergang am Ausgang			t _{PHL}	31	ns
Freigabezeit zu H-Pegel am Ausgang	OE	Υ	t_{pZH}	26	ns
Freigabezeit zu L-Pegel am Ausgang	OE	Y	t_{pZL}	30	ns
Verzögerungszeit für Übergang von H-Pegel zu hochohmigen Zustand am Ausgang $U_{IL}=0~V$ $U_{IH}=4,5~V$ $R_L=670~\Omega$ $C_L=5~pF$	OE	Y	t _{pHZ}	20	ns
Verzögerungszeit für Übergang von L-Pegel zu hochohmigen Zustand am Ausgang	OE	Υ	t_{pLZ}	20	ns
Taktfrequenz $U_{CC} = 5 \text{ V}$			f_{T}	min. 20	MHz

Ag 05/044/85

veb halbleiterwerk frankfurt/oder betrieb im veb kombinat mikroelektronik DDR 1200 Frankfurt/Oder - Telefon 4 60

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie