mikreektronik

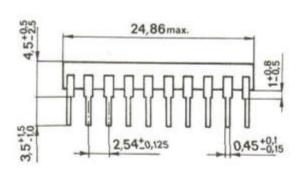
Information

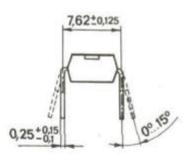
DL 299 D

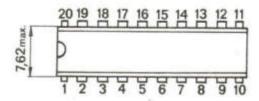
8 bit-Universalschieberegister

Vorläufige technische Daten

Gehäuse: 20 poliges DIL- Plastgehäuse

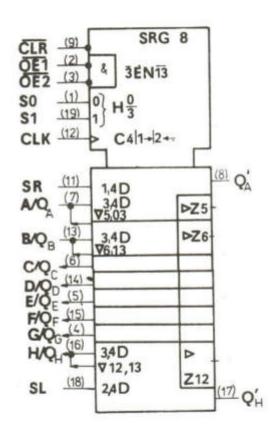

Bauform: 21.3.20.12.20 nach TGL 26713


Masse: ≤ 2,5 g


Vergleichstyp: SN 74 LS 299 N

Rastermaß: 2,5 \pm 0,125 mm

Reihenabstand: 7,62 mm



Pinbelegung:

Pin	Symbol	Beschreibung	Pin	Symbol	Beschreibung
1	so	Eingang "Betriebsartensteuerung"	11	SR	Dateneingang "Schieben rechts"
2	ŌĒ1	Enable-Eingang	12	CLK	Takt-Eingang
3	OE2	Enable-Eingang	13	B/Q _B	Daten-Ein-/Ausgang
4	G/Q _G	Daten-Ein-/Ausgang	14	D/Q _D	Daten-Ein-/Ausgang
5	E/Q _E	Daten-Ein-/Ausgang	15	F/Q _F	Daten-Ein-/Ausgang
6	C/Qc	Daten-Ein-/Ausgang	16	H/Q _H	Daten-Ein-/Ausgang
7	A/Q _A	Daten-Ein-/Ausgang	17	Q_H	Daten-Ausgang
8	Q_A	Daten-Ausgang	18	SL	Daten-Eingang "Schieben links"
9	CLR	Eingang "Rücksetzen"	19	S ₁	Eingang "Betriebs- artensteuerung"
10	M	Masse	20	Ucc	Betriebsspannung

Logikschaltbild:

Funktionstabelle:

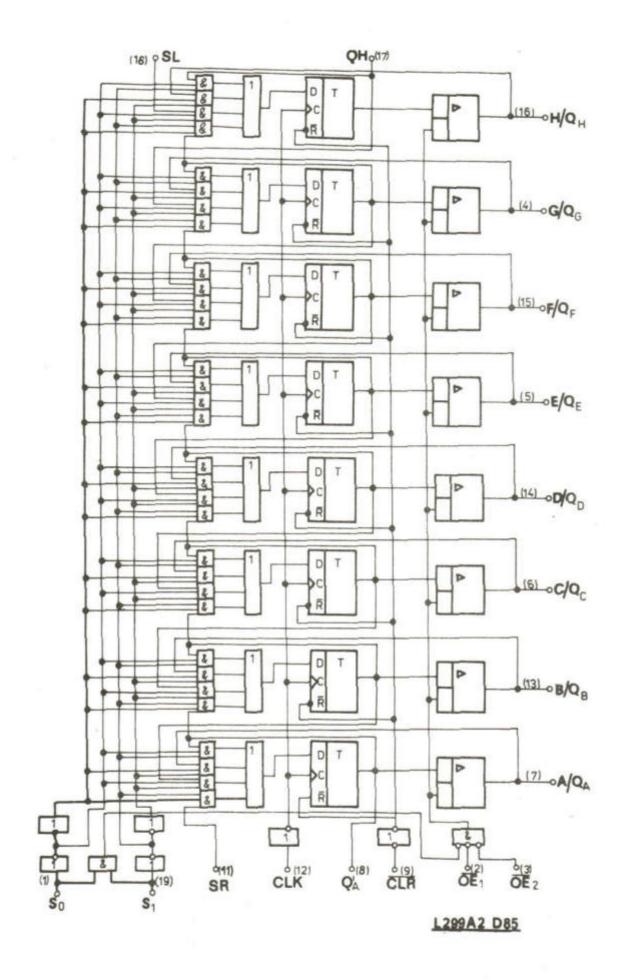
Betriebsart				Eing	änge				Eingänge/Ausgänge					Ausgänge				
	CLR	S1	so	OE1	ŌE2	CLK	SL	SR	A/Q	B/Q _B	C/Q _C	D/Q	E/Q _E	F/Q _F	G/Q	H/QH	Q'A	Ω′н
Rücksetzen	L	Х	L	L	L	X	X	X	L	L	L	L	L	L	L	L	L	L
	L	L	X	L	L	×	X	X	L	L	L	L	L	L	L	L	L	L
	L	Н	Н	×	X	×	X	X	L	L	L	L	L	L	L	L	L	L
Halten	н	L	L	L	L	×	X	Х	Q _{AO}	Q _{BO}	Qco	Q _{DO}	Q _{EO}	Q _{FO}	Q_{GO}	Q _{HO}	Q _{AO}	Q _{HO}
reconstruction statement	Н	X	X	L	L	L	X	X	Q_{AO}	Q_{BO}		Q_{DO}	Q_{EO}	Q_{FO}		Q_{HO}		Q _{HO}
Schieben rechts	Н	L	Н	L	L	1	Х	Н	Н	Q _{AU}	Q _{BU}	Q _{CU}	Q_{DU}	Q _{EU}	Q _{FU}	Q_{GU}	Н	Q_{GU}
	Н	L	Н	L	L	1	X	L			Q _{BU}	Q _{CU}	\mathbf{Q}_{DU}	\mathbf{Q}_{EU}				Q_{GU}
Schieben links	Н	Н	L	L	L	1	Н	X	Q _{BU}	Qcu	Q _{DU}	Q _{EU}	Q _{FU}	Q_{GU}	Q _{HU}	Н	Q _{BU}	Н
	Н	Н	L	L	Ļ	1	L							Q_{GU}				L
Einschreiben	Н	Н	Н	Х	X	1	X	Х	а	b	С	d	е	f	g	h	а	h

H = High - Pegel

L = Low-Pegel

X = beliebiger Pegel

 \uparrow = Low – High – Flanke


 $Q_{AO} \dots Q_{HO} = Pegel von Q_A \dots Q_H$, bevor die statischen Eingangsbedingungen angelegt werden

 $Q_{AU} \dots Q_{HU} = Pegel \, von \, Q_A \dots Q_A \dots Q_H$

a ... h

= Daten an den Eingängen A bis H, die in die Flip-Flop eingeschrieben wurden, während die Flip-Flop-Ausgänge hochohmig sind.

Blockschaltbild:

Der Schaltkreis DL 299 D enthält ein 8 bit-Universalschieberegister, mit dem die Betriebsarten Einschreiben, Speichern, Links- bzw. Rechtsschieben sowie Rücksetzen realisiert werden können. Es besteht aus 8 Registerzellen mit dazugehörigen 3-State-Ausgangsstufen (Q-Ausgänge). Von 8 weiteren Ausgangsstufen der Flip-Flop (Q-Ausgänge) für die internen Rückführungen sind die für die Kaskadierung des Schaltkreises benötigten Ausgänge Q'_A und Q'_H aus dem Schaltkreis herausgeführt. Außerdem sind Ansteuerschaltungen für den Takt (CLK) und das Rücksetzen (CLR) der Registerzellen sowie eine Logik zur Betriebsarteneinstellung (S0, S1) vorhanden.

Die Registerzellen sind aus D-Flip-Flop aufgebaut, die synchron getaktet (mit L-H-Schaltflanke an CLK-Eingang) und gleichzeitig zurückgesetzt (mit L-Pegel an CLR) werden.

Die Voreinstellung der Flip-Flop erfolgt über eine Torschaltung, die durch die an den Eingängen "Betriebsartensteuerung" (S0, S1) angelegten Pegel gesteuert wird.

Das Schalten der 3-State-Ausgänge Q in den hochohmigen Zustand erfolgt bei der Betriebsart "Einschreiben" (S0-S1-H) bzw. durch die Enable-Eingänge (OE1 bzw. OE2 = H). Dabei werden serielle Funktionen und das Rücksetzen der Registerzellen nicht beeinflußt.

Grenzwerte (gültig für den Betriebstemperaturbereich)

		min.	max.	
Betriebsspannung	Ucc	0	7	V
Eingangsspannung	U	-	7	V
Ausgangsspannung im 3-State-Zustand	Uoz	-	5,5	V

Betriebsbedingungen:

Betriebsspannung	Ucc	4,75	5,25	V
H-Ausgangsstrom	-I _{OH}	_	2,6	mA
H-Ausgangsstrom Q'	-I _{OH}	-	0,4	mA
L-Ausgangsstrom Q	IOL	-	24	mA
L-Ausgangsstrom Q'	loL	_	8	mA
Impulsdauer am Eingang CLK	t _w			100700
CLK High		30	_	ns
CLK Low		10		ns
Impulsdauer am Eingang CLR	t _w			
CLR Low		20	-	ns
Voreinstellzeit ¹)	t_{su}			
Betriebsart ²)				
Daten High ³)		35	-	ns
Daten Low³)		20	_	ns
CLR inaktiver Zustand		20	-	ns
Haltezeit1)	t _h			
Betriebsart ²)		10	_	ns
Daten ³)		0	-	ns
L-Eingangsspannung	UIL	_	0,8	V
H-Eingangsspannung	UIH	20	-	V
max. Frequenz	f _{max}	25	-	MHz
Umgebungstemperatur	9 _a	0	70	°C

¹⁾ Als Bezugsflanke des CLK-Impulses gilt die L-H-Flanke

²⁾ Betriebsarteneinstellung: an S0 und S1 anliegende Pegel

³⁾ Daten: an seriellen Eingängen und an Dateneingängen/-ausgängen anliegende Pegel.

Statische Kennwerte ($U_{CC} = 5.0 \text{ V} \pm 0.25 \text{ V}; \, \vartheta_a = 0 \dots 70 \, ^{\circ}\text{C}$):

			min.	max.	
Stromaufnahr	me	Icc		50	
$U_{CC} = 5,25 \text{ V}$	33.5		-	53	mA
	zschlußstrom²)	$-I_{os}$			
$U_{CC} = 5,25 \text{ V}$	Q		30	130	mA
	Q'		20	100	mA
			min.	max.	
H-Ausgangss	pannung	U_{OH}			
	$-I_{OH} = 2,6 \text{ mA} \Omega$		2,4	-	V
	$-I_{OH} = 0.4 \text{mA}$ Q'		2,7	-	V
L-Ausgangss	pannung	UOL			
	I _{OL} = 12 mA Q		-	0,4	V
	$I_{OL} = 24 \text{mA} \Omega$		-	0,5	V
	$I_{OL} = 4 \text{mA} \Omega'$		-	0,4	
	$I_{OL} = 8 \text{ mA } Q'$		-	0,5	V
H-Eingangsst	rom	I _{IH}			
	U _{IH} = 2,7 V; A bis H		-	40	μА
- 00	$U_{1H} = 5.5 \text{ V};$		-	100	μА
	$U_{IH} = 2.7 \text{ V}; \text{S0, S1}$		-	40	μА
	$U_{IH} = 7.0 \text{ V};$		_	200	μА
	$U_{IH} = 2.7 \text{ V}$; Sonstige I_{IH}		-	20	μА
	$U_{IH} = 7.0 \text{ V}$		-	100	μΑ
L-Eingangsst	rom	$-I_{1L}$			
$U_{CC} = 5,25 \text{ V};$					
CHEST CHESTON	S0, S1		-	720	μΑ
	sonstige		-	360	μΑ
Ausgangsstr	om bei 3-State	IOZH			
$U_{cc} = 5,25 \text{ V};$			-	40	μΑ
	$U_0 = 0.4 \text{ V}$	$-I_{OZL}$		440	μΑ
Clampingspa	annung der Eingangsdiode	$-U_1$			
	$-I_L = 18 \text{mA}$		-	1,5	V

¹⁾ Eingänge CLR, S0, OE1, SL und SR auf 0 V; S1, OE2 und CLK auf 4,5 V gelegt, Ausgänge Q und Q' offen.

²) zulässige Prüfzeit ≤ 1 s; Kurzschluß nur an einem Ausgang zulässig.

Dynamische Kennwerte ($U_{CC} = 5.0 \text{ V} \pm 55 \text{ mV}$; $\vartheta_a = 25 \, ^{\circ}\text{C} - 5\text{K}$):

			min.	max.	
Signalverzögerungszeiten					
CLK	Q'	tpLH	-	33	ns
		t _{pHL}	-	33	ns
CLR	Q'	t _{pHL}		40	ns
CLK	Q	t _{pLH}	-	25	ns
		t _{pHL}	-	39	ns
CLR	Q	tpHL	-	40	ns
ŌĒ	Q	t _{pZL}	-	30	ns
		t _{pHZ}		15	ns
		t _{pLZ}	-	15	ns

Bestellbezeichnung: Integrierter Schaltkreis DL 299 D.

Änderungen, dem technischen Fortschritt entsprechend, behalten wir uns vor. Sollten beim Einsatz der Bauelemente Fragen auftreten, wenden Sie sich an uns. Ein erfahrenes Ingenieurkollektiv hilft Ihnen, Problemlösungen zu finden.

Ag 05/021/86

veb halbleiterwerk frankfurt/oder im veb kombinat mikroelektronik DDR 1200 Frankfurt/Oder - Telefon 4 60

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie