

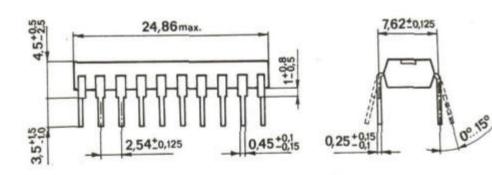
Information

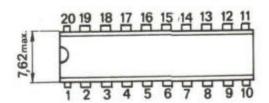
DL 374 D

8 D-Flip-Flop

Vorläufige technische Daten

Gehäuse: 20poliges DIL- Plastgehäuse

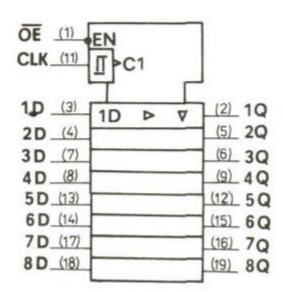

Bauform: 21.3.20.2.20 nach TGL 26723


Masse: ≤ 2,5 g

Vergleichstyp: SN 74 LS 374 N

Rastermaß: 2,54 ± 0,125 mm

Reihenabstand: 7,62 mm



Pinbelegung:

Pin	Symbol	Beschreibung	Pin	Symbol	Beschreibung
1	ŌĒ	Enable-Eingang	11	CLK	Takteingang
2	10	Ausgang	12	5Q	Ausgang
3	1D	FF-Eingang	13	5D	FF-Eingang
4	2D	FF-Eingang	14	6D	FF-Eingang
5	20	Ausgang	15	60	Ausgang
6	30	Ausgang	16	70	Ausgang
7	3D	FF-Eingang	17	7D	FF-Eingang
8	4D	FF-Eingang	18	8D	FF-Eingang
9	40	Ausgang	19	80	Ausgang
10	M	Masse	20	Ucc	Betriebsspannung

Logikschaltbild:

L374 A1 D85

Der Schaltkreis DL 374 D enthält 8 taktflankengesteuerte D-Flip-Flop. Die Ausgänge der D-Flip-Flop können durch ein gemeinsames Enable-Signal ($\overline{\text{OE}}=\text{H}$) in den hochohmigen Zustand geschaltet werden.

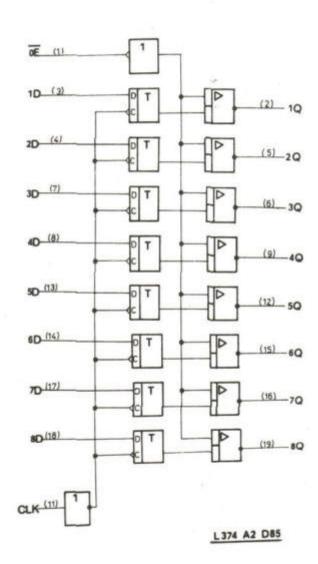
Die an den D-Eingängen anliegende Information wird mit der L-H-Flanke des gemeinsamens Taktes CLK in die Flip-Flop eingeschrieben. Der CLK-Eingang weist Hystereseverhalten auf.

Funktionstabelle:

ŌĒ	CLK	D	Q
L	1	Н	Н
L	1	L	L
L	L	X	Q _o
Н	X	X	Z

H - High-Pegel

L - Low-Pegel


X - Pegel beliebig, Low oder High

Z - hochohmiger Zustand

↑ - Low-High-Flanke

Qo - Signal bleibt gespeichert

Blockschaltbild:

Grenzwerte (gültig für den Betriebstemperaturbereich)

		min.	max.	
Betriebsspannung	Ucc	0	7	V
Eingangsspannung	Ui	-	7	V
Ausgangsspannung im 3-State-Zustand	U_{oz}	-	7	V
Betriebsbedingungen:				
Betriebsspannung	Ucc	4,75	5,25	V
H-Ausgangsstrom	$-I_{OH}$	-	2,6	mA
L-Ausgangsstrom	IOL	-	24	mA
Impulsdauer am Eingang CLK	t _{wH}	15	-	ns
Voreinstellzeit1)	t _{su}	20	-	ns
Haltezeit1)	th	0	-	ns
L-Eingangsspannung .	UIL	-	0,8	V
H-Eingangsspannung	Unn	2,0	-	V
maximale Taktfrequenz	f _{max}	35	-	MHz
Umgebungstemperatur	9	0	70	°C

¹⁾ Als Bezugsflanke des CLK-Impulses gilt die L-H-Flanke

Statische Kennwerte (U_{CC} = 5,0 V \pm 0,25 V; ϑ_a = 0 bis 70 °C):

			min.	max.	
Stromaufnah	ime	Icc			
$U_{CC} = 5,25 V;$	$U_{\overline{OE}} = 4,5 \text{ V}$		-	40	mA
H-Ausgangss	spannung	U _{OH}			
$U_{CC} = 4,75 \text{ V};$	$-I_{OH} = 2.6 \text{mA}$	*	2,4	-	V
L-Ausgangss	pannung	UoL			
$U_{cc} = 4,75 V;$	$I_{OL} = 12 \text{ mA}$		-	0,4	V
	$I_{OL} = 24 \text{mA}$		_	0,5	V
H-Eingangss	trom	I _{tH}			
$U_{cc} = 5,25 V;$	$U_{IH} = 2.7 \text{ V}$		-	20	μΑ
	$U_{1H} = 7.0 V;$		-	100	μΑ
L-Eingangsst	rom	-I _{IL}			
$U_{CC} = 5,25 \text{ V};$	$U_{1L} = 0.4 V$		_	0,36	mA
Ausgangsstr	om bei 3-State	I _{OZH}			
$U_{CC} = 5,25 V;$	$U_0 = 2.7 \text{ V}$		-	20	μА
	$U_0 = 0.4 \text{ V}$	-l _{ozl}	_	20	μΑ
Flußspannun	g der Eingangsdiode	$-U_i$			
$U_{CC} = 4,75 \text{ V};$	$-I_{L} = 18 \text{mA}$		_	1,5	V
Ausgangskur	zschlußstrom ¹)				
$U_{CC} = 5,25 \text{ V}$		$-I_{os}$			
			30	130	mA

¹⁾ zulässige Prüfzeit ≤ 1 s; Kurzschluß nur an einem Ausgang zulässig.

Dynamische Kennwerte ($U_{CC} = 5.0 \text{ V} \pm 55 \text{ mV}$; $\vartheta_a = 25 \, ^{\circ}\text{C} - 5\text{K}$)

				min.	max.	
Signalverzöger	ungszeiten					
$U_{CC} = 5 \text{ V}; C_L =$	50 pF					
$R_L = 500 \Omega$	CLK → Q		tpHL	-	28	ns
		20	tpLH	-	28	ns
	OE→Q		t _{pZL}	-	28	ns
			t _{pZH}	-	28	ns
			t _{pLZ}	-	25	ns
		100	tpHZ	_	20	ns

Bestellbezeichnung: Integrierter Schaltkreis DL 374 D.

Änderungen, dem technischen Fortschritt entsprechend, behalten wir uns vor. Sollten beim Einsatz der Bauelemente Fragen auftreten, wenden Sie sich an uns. Ein erfahrenes Ingenieurkollektiv hilft Ihnen, Problemlösungen zu finden.

Ag 05/021/86

veb halbleiterwerk frankfurt/oder im veb kombinat mikroelektronik DDR 1200 Frankfurt/Oder - Telefon 4 60

elektronik export-Import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie