

Information

DL 75113 DC

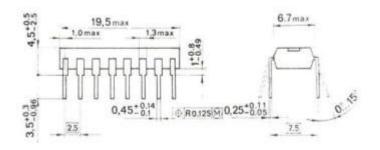
Leitungssender-Schaltkreis

Der Schaltkreis DL 75113 DC ist ein 2fach-Leitungssender, der Differenzsignale entsprechend den Empfehlungen der CCITT für symmetrische Schnittstellenbedingungen (V.11) liefert, sofern die Ausgangsstufen als Gegentaktausgangsstufen extern gebildet werden. Abweichend davon ist Open-Kollektor-Betrieb möglich. Das Bauelement enthält die Steuereingänge OE, 1 OE, 2 OE, die die Ausgangsstufen der zwei Sender je Baustein entsprechend der Funktionstabelle aktivieren oder in den hochohmigen Zustand versetzen können. Der Schaltkreis ist für symmetrische Datenübertragungen bis zu einer Entfernung von max. 1 200 m mit einer Übertragungsrate von max. 10 M bit/s konzipiert.

Vorläufige technische Daten

Gehäuse:

16polig, DIL-Plast


Rastermaß: 2,5 mm

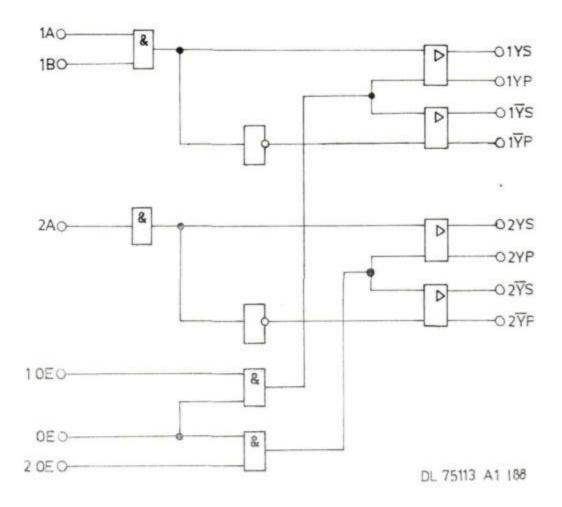
Bauform:

A1 GG nach TGL 26713/02

Masse:

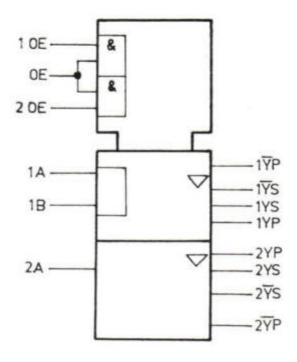
≤1,5 g

A1GG TGL 26713/07



Anschlußbelegung:

- 1...Datenausgang 1 YP (negiert)
- 2...Datenausgang 1 YP (negiert)
- 3...Datenausgang 1 YS
- 4...Datenausgang 1 YP
- 5...Dateneingang 1 A
- 6...Dateneingang 1 B
- 7...Stevereingang OE1
- 8...Masse


- 9...Steuereingang OE
- 10...Steuereingang 2 OE
- 11...Dateneingang 2 A
- 12...Datenausgang 2 YP
- 13...Datenausgang 2 YS
- 14...Datenausgang 2 YS (negiert)
- 15...Datenausgang 2 YP (negiert)
- 16...Betriebsspannung UCC

Blockschaltbild:

... Element mit höherer Belastbarkeit

Logikschaltbild:

DL 75113 A2 188

Funktionstabelle:

Eingänge		Enable-Eingänge		Ausgänge		
Α	B*)	1 OE/2 OE	OE	Υ	Y	
×	X	L	X	Z	Z	HHigh-Pegel;
X	×	×	L	Z	Z	L Low-Pegel
L	×	H	H	L	H	XPegel beliebig (H oder L)
X	L	H	H	L	H	Zhochohmiger Zustand
Н	Н	Н	Н	Н	L	Gilt nur für Treiber 1; bei Treiber 2 entfällt Zeile 4 und Eingang B.

Grenzwerte:		min.	max.	
Betriebsspannung	Ucc	_	7	٧
Eingangsspannung	Uı	_	7	V
Ausgangsspannung	Uo	_	6	V
Gesamtverlustleistung	Ptot1)	_	1	W

¹⁾ Kurzschluß ist für einen Ausgang unter Beachtung der Gesamtverlustleistung zulässig.

Betriebsbedingungen:

Betriebsspannung	Ucc	4,75	5,25	V
H-Eingangsspannung	U _{IH}	2	_	V
L-Eingangsspannung	U_{IL}	_	0,8	٧
Lastwiderstand zwischen Y und \overline{Y}	$R_{Y}{/Y}$	1001)	_	Ω
Umgebungstemperatur	T_a	0	70	°C

 $^{^{1})}$ Zulässige max, Toleranz: $\pm 5\,\%$

Statische Kennwerte: (U_CC = 5,0 V \pm 0,25 V; T_a = 0...70 °C)

		min.	max.	
H-Ausgangsspannung $U_{CC}=4,75\ V,\ I_{OH}=30\ mA$	U _{OH}	2	-	٧
L-Ausgangsspannung $U_{CC}=4,75\ V,\ I_{OL}=30\ mA$	UoL	_	0,5	٧
Differenzausgangsspannungsänderung¹) $U_{CC1} = 5,25 \text{ V}, \ U_{CC2} = 4,75 \text{ V}$	AlUopl	_	0,4	٧
Ausgangsoffsetspannung $U_{CC} = 5,25 \text{ V}$	Uoc	3	_	٧
Ausgangsoffsetspannungsänderung $U_{CC}=5,25\ V$	ΔIU _{oc} l	-	0,4	V
Ausgangsströme $U_{CC}=0~V,~U_{01}=-0,25~V,~U_{02}=5,5~V$	l ₀₁ , l ₀₂	_	100	μΑ
Ausgangsstrom bei 3-State $U_{CC}=5,25~V,~U_{01}=5,5~V$ $U_{02}=0,5~V$	l _{ozh} , —l _{oz} L	_	20	ĮλΑ
H-Eingangsstrom $U_{CC} = 5,25 \text{ V}; U_{IH} = 7 \text{ V}$	t_{IH}	_	50	μA
L-Eingangsstrom $U_{CC} = 5,25 \text{ V}, U_{IL} = 0,4 \text{ V}$	$-I_{1L}$			
Eingänge 1A, 1B, 1 OF, 2 OF Eingang		_	1,6 3,2	mA mA
Ausgangskurzschlußstrom 2) $U_{CC} = 5,25 \text{ V}$	—los	30	150	mA
Flußspannung der Eingangsdiode $U_{CC}=4,75\ V,\ -I_1=18\ mA$	—U _{IK}	1,5	1,5	V
Stromaufnahme $U_{CC}=5,25\ V,\ OE=0\ V$	lcc	_	65	m.A

 $^{^{1})\} U_{OD}=U_{OD}(H)-U_{OD}(H)$

²⁾ Nicht mehr als einen Ausgang gleichzeitig kurzschließen. Dauer des Kurzschlusses ≤1 s (aber, siehe Bemerkung 1. unter Grenzwerte).

Dynamische Kennwerte: (U_CC = 5,0 V \pm 0,1 V, $T_{\alpha} = 25\,^{\circ}\text{C} - 5~\text{K})$

		min.	max.	
Signalverzögerungszeiten				
$R_{L1} = 500~\Omega \pm 15~\Omega$, $C_L = 50~pF \pm 5~pF$	tPHL.	_		
1660 - 166	TPLH	_	25	ns
	TPZH		40	ns
	t _{PZL}	-	45	ns
	t _{PHZ}	_	30	ns
	TPLZ	_	35	ns
Differenzsignalverzögerungszeit RL2 = 100 $\Omega \pm 3~\Omega$	too	_	25	ns
Flankensteilheit $C_L = 50 \text{ pF} \pm 5 \text{ pF}$	t _{TD}	_	25	ns

veb halbleiterwerk frankfurt/oder im veb kombinat mikroelektronik

Telefon 460 - Telex 016252 Postfach 379 - Frankfurt (Oder) - 1200

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Hijus der Elektroindustrie, Telefon: 2180