mikreektronik

Information

~DL 8127 D

vorläufige technische Daten

Hersteller: VEB Halbleiterwerk Frankfurt (Oder)

Systemtaktgenerator DL 8127 D

Gehäuse: 24 poliges DIL-Plastgehäuse

Bauform: 21.3.20.2.24 nach TGL 26713, Rastermaß: 2,54 mm

Masse: %3 g

55N0	1	IN UCC
SSNC	2	23 RUN/HALT
TCK/4	3	22 TOEN
TCK/2	9	24 ST 1
TCK	5	20 ST2
CLA.	6	49 ST3
C	1	TIMEOUT
ZCK	8	TP READY
osc	9	46 WAIT
X2	40	B RESETIN
X1	44	THE RESETOUT
M	12	13 4/3

Bild 1: Anschlußbelegung

1/87 (10)

Der DL 8127 D arbeitet als Systemtaktgenerator und enthält neben dem Taktoszillator die erforderlichen Frequenzteiler und Takttreiber zur Ansteuerung moderner 8- und 16-Bit-Mikroprozessorsysteme.
Zusätzlich zu einem speziellen Ausgangstreiber (ZCK, MOS-Pegel) für die CPU ist ein TTL-Oszillatorausgang (OSC) für die dynamische Speichersteuerung vorgesehen. Der Taktoszillator ist so konstruiert, daß er sowohl mit einem Quarz, als auch mit einem externen TTL-Signal (auf X1) arbeiten kann.
Der DL 8127 D besitzt einen umschaltbaren Teiler zur Bereitstellung des CPU-Taktes (ZCK).
Zusätzliche Teiler erzeugen synchrone TTL-Taktsignale mit der viertel, der halben und der ganzen
Frequenz des CPU-Taktes (TCK/4, TCK/2, TCK). Der Eingang 4/3 steuert sowohl das Teil- als auch des
Tastverhältnis. Ein interner Pull-up-Widerstand setzt den offenen Eingang auf High. In dieser Betriebsart beträgt das Teilverhältnis 4, bei einem Tastverhältnis von 1:2. Der CPU-Takt (ZCK) und
der TTL-Takt (TCK) sind gleichphasig.

Ein Low am Eingang 4/3 bewirkt ein Teilerverhältnis von 3 bei einem Tastverhältnis von 1:3 und Negation des CPU-Taktes (ZCK) gegenüber dem TTL-Takt an TCK. Die Takttreiber sind löschbar, um die Synchronisation aller Taktausgänge zu ermöglichen (TCK's=HIGH, ZCK=HIGH oder LOW entsprechend Pegel an 4/3). Die Steuerfunktionen umfassen RESET, RUN/HALT, SINGLE-STEP, READY und einen READY-TIMEOUT-Zähler, der die WAIT-Forderung eines externen Gerätes auf 15 Taktzyklen begrenzt. Der WAIT-Eingang der CPU wird von RUN/HALT, SINGLE-STEP (SSNO, SSNC), STATUS (STI... ST3) und READY gesteuert. Wenn RUN/HALT = LOW ist, setzt der DL 8127 D den WAIT-Ausgang auf LOW und veranlaßt die CPU, Warte-zustände einzunehmen. Mit den SINGLE-STEP-Eingängen (SSNO, SSNC) können die Wartezustände für jeweils eine CPU-Taktperiode unterbrochen und damit Schrittbetrieb realisiert werden. Bei Nichtbenutzung des Einzelschrittbetriebes sind SSNO auf LOW- und SSNC auf HIGH-Potential zu legen.

Der READY-Eingang (High-aktiv) dient den externen Geräten zur Forderung von Wartezuständen. Der LOW-aktive Eingang TOEN (timeout enable) begrenzt die WAIT-Forderung eines externen Gerätes auf 15 Taktzyklen, d. h. mit dem 16. Takt wird der Ausgang TIMEOUT auf LOW und der Ausgang WAIT auf HIGH gesetzt. LOW-Pegel an den 3 intern NOR-verknüpften Status-Eingängen (ST1... ST3) sperrt den TIMEOUT-Zähler und setzt den Ausgang WAIT auf HIGH.

Der LOW-aktive, mit einem internen Pull-up-Widerstand versehene Eingang RESETIN ermöglicht die Synchronisation des RESET-Signals mit dem ZCK-Ausgang. Der zugehörige Ausgang RESETOUT ist Low-aktiv, wenn 4/3-HIGH ist, andernfalls ist er HIGH-aktiv.

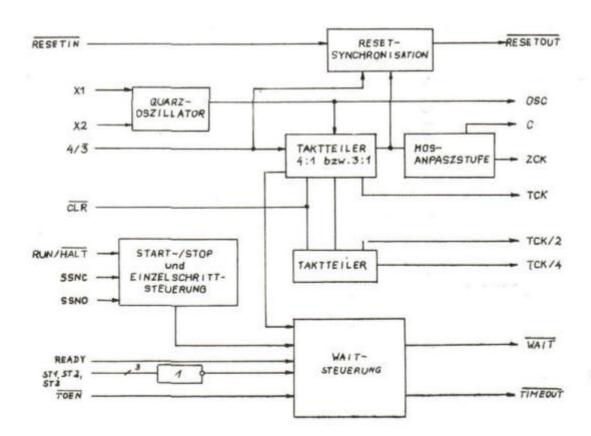


Bild 2: Blockschaltbild

Beschreibung der Anschlüsse

4/3 Eingang zur Steuerung der Betriebsart. HIGH ergibt ein Takttastverhältnis von 1:2 bei einem Teilungsfaktor von 4. LOW bewirkt ein Tastverhältnis von 3 sowie

1:2 bei einem Teilungsfaktor von 4. LOW bewirkt ein Tastvernattnis von 3 sowie die Negation des CPU-Taktes ZCK gegenüber dem TTL-Takt TCK (interner Pull-up-

Widerstand).

RESETIN LOW-aktiver Eingang zur Synchronisation des RESET-Signals mit dem CPU-Takt

(interner Pull-up-Widerstand, etwa 57 kOhm).

RESETOUT Synchronisierter RESET-Ausgang; LOW-aktiv, wenn 4/3=HIGH.

X1, X2 Eingänge für externen Quarzanschluß; wird X1 als TTL-Eingang benutzt, bleibt

X2 offen.

ZCK Gepufferter MOS-Taktausgang für CPU und Peripherie. Er liefert die erforderliche

HIGH-Ausgangsspannung (Ucc - 0,4 V).

TCK Gepufferter TTL-Taktausgang mit der gleichen Frequenz wie ZCK, TCK ist mit ZCK

synchronisiert. Wenn 4/3=LOW, ist ZCK zu TCK negiert.

TCK/2. Gepufferte TTL-Ausgänge mit der halben bzw. viertel TCK-Frequenz. Synchronisiert

mit der Anstiegsflanke von TCK.

OSC Oszillatortaktausgang, TTL-gepuffert. Liefert High-Speed-Takt für dynamische

Speichersteuerung oder andere Anwendungen. Die ZCK- und TCK-Ausgänge sind mit

der OSC-Anstiegsflanke synchronisiert.

CLR LOW-aktiver Eingang, mit der OSC-Anstiegsflanke synchronisiert.

Setzt die internen Taktteiler zurück, um die Synchronisation der Taktausgänge

mehrerer Schaltkreise zu gewährleisten.

WAIT Verriegelter (latched) WAIT-Ausgang zur Verbindung mit der CPU.

Wird von der READY-, ST1-, ST2-, ST3-, RUN/HALT- und SINGLE-STEP-Eingängen zur

Forderung von Wartezuständen gesteuert.

READY HIGH-aktiver Eingang zur Verbindung mit peripheren Geräten. Einhaltung der dem

WAIT-Latch entsprechenden Einstell- und Haltezeitbedingungen erforderlich.

ST1, ST2, Statuseingänge von CPU und peripheren Geräten. LOW an allen Eingängen kenn-

zeichnet interne CPU-Arbeit oder Refresh-Zyklen.

Während dieser Zeit ist TIMEOUT abgeschaltet, um ein unpassendes Interrupt zu vermeiden. Die Wirkung der Statuseingänge ist von den Einstell- und Haltezeit-

bedingungen des WAIT-Latches abhängig.

RUN/HALT Eingang der Stert/Stop- und Einzelschrittsteuerung; LOW erzwingt ein LOW am

WAIT-Ausgang (interner Pull-up-Widerstand).

SSNO, SINGLE-STEP-Steuereingänge; kurzzeitiges Abschalten von SSNC von Masse und Erden

von SSNO bewirkt das Übergehen der CPU von einem Wartezustand in den anderen.
RUN/HALT muß für Einzelschrittsteuerung auf LOW liegen (interner Pull-up-Wider-

stand).

TIMEOUT Ausgang, hauptsächlich zur Verbindung mit einem Interrupteingang der CPU (NMI).

Der TIMEOUT-Zähler zählt die ZCK/TCK-Taktzyklen, um die unbeantwortete WAIT-Forderung eines peripheren Gerätes auf 15 Taktzyklen zu begrenzen. Das heißt,

nach 15 Taktzyklen wird ein HIGH am WAIT-Ausgang erzwungen.

TOEN LOW-aktiver timeout-enable-Eingang; LOW gibt den TIMEOUT-Zähler frei. HIGH

schaltet ihn ab und ermöglicht die WAIT-Steuerung durch die READY-,

RUN/HALT- und SINGLE-STEP-Eingänge.

Bootstrap-Eingang; Kondensator C_C wird mit C und ZCK verbunden, um eine kürzere

ZCK-Anstiegszeit zu ermöglichen.

UCC Betriebsspannung

M Masse

SSNC

Grenzwerte

	Kurzzeichen	min.	max.	Einheit
Betriebsspannung	UCC	0	7	V
Eingangsspannung x1.4/3, SSNO, SSNC, RUN/HALT	uI		Ucc+0,5	v
übrige Eingänge Spannung an den Ausgängen		-0,5	5,5	v
(HIGH-Pegel)	u _{он}	-0,5	3,3	1007
Spannung an C	UC	-0,5	8,0	V
LOW-Ausgangsgleichstrom	IOL		30	mA
Eingangsgleichstrom	II	-30	5	mA

Betriebsbedingungen

		Kurzzeichen	min.	max.	Einheit
Betriebsspannung		UCC	4,75	5,25	v
HIGH-Eingangsspannung ST1, ST2, ST3, X1		UIH			V
CLR, TOEN, READY			2		V
SSNO, SSNC, 4/3,	RUN/HALT		2,4		v
RESETIN			2,8		V
LOW-Eingangespann	ung	UIL			
ST1, ST2, ST3, X1	, CLR, TOEN, READY			0,8	v
RUN/HALT, SSNO, S	SNC, 4/3, RESETIN	ì		0,4	v
HIGH-Ausgangsstro	n	-I _{OH}			1
ZCK			Į.	0,2	mA
TTL-Ausgänge				2,6	mA
LOW-Ausgangsatrom		IOL			
CK				2,0	#A
TTL-Ausgänge				16,0	mA
Voreinstellzeit	CLR → OSC _	tsu	25		ns
Haltezeit	CLR + OSC J	th	-6		ns
/oreinstellzeit	READY - ZCK	tsu			
$4/\bar{3} = 5 \text{ V}$			T/4+10 1)		ne
$1/\overline{3} = 0 \vee$			20		ns
altezeit	READY + ZCK	t _h			
$4/\overline{3} = 5 \text{ V}$			-T/4 1)		ns
$4/\overline{3} = 0 \text{ V}$			-5		ns
Voreinstellzeit	ST1,2,3 + ZCK		11		
4/3 = 5 V		tsu	T/4+12 1)		ns
$4/\overline{3} = 0 \text{ V}$			25		ns
Haltezeit	ST1,2,3 - ZCK	th	11		
1/3 = 5 V			-(T/4-3) ¹⁾		ns
$4/\overline{3} = 0 \text{ V}$			-12		ne
/oreinstellzeit	TOEN - ZCK		9207		
4/3 = 5 V		t su	35		ne
4/3 = 0 V			30		ns

Fortsetzung Betriebsbedingungen

-	Kurzzeichen	min.	max.	Einheit
Haltezeit TOEN - ZCK	t _h			
4/3 = 5 V		-15		ne
4/3 = 0 V	1	-10		ns
Umgebungstemperatur	v.	0	70	°c

¹⁾ T ist die ZCK-Taktperiodendauer

Statische Kennwerte

(UCC = 5 V + 0,25 V. A = 0 ... 70 °C)

	Kurzzeichen	min.	max.	Einhei
Eingangsclampingspannung UCC = 4,75 V, -I _I = 18 mA,	-U _I		1,5	v
MIGH-Eingangsstrom CC = 5,25 V, U _{IH} ≈ 2,75 V	ін			
4/3, SSNC, SSNO, RUN/HALT		-3001)		JUA
RESETIN	1 1	-2001)		,uA
ST1, ST2, ST3, CLR, TOEN, READY			50	,UA
X1			600	/UA
U _{CC} = 5,25 V, U _{IH} = 5,5 V				
ST1, ST2, ST3, CLR, TOEN, READY			,	
	1417		1	mA
LOW-Eingangsstrome	-I _{IL}			1
U _{CC} = 5,25 V, U _{IL} = 0,4 V				
SSNO SSNC, 4/3, RUN/HALT, READY			1,6	mA
	1		1,2	mA.
CLR, TOEN, X1			0,72	m.A.
ST1, ST2, ST3, RESETIN			0,36	mA
VIGH-Ausgangsspannung U _{CC} = 4,75 V, -I _{OH} = 0,2 mA	Он	4,0		\ v
ZCK	- 21	4,00		v
TTL-Ausgänge				
-I _{OH} = 2,6 mA		2,4		v
LOW-Ausgangsspannung	UOL			- 0
U _{CC} = 4.75 V, I _{OL} = 2.0 mA	OL			1
ZCK			0,45	V.
TTL-Ausgänge			0,5	V
	1 1			
Ausgangskurzschlußstrom 2)				
U _{CC} = 5,25 V	-I _{OS}			
zck		50	240	mA.
TTL-Ausgänge		40	130	MA.
Stromaufnahme	7	1,000	(50-507-0)	
U _{CC} = 5,25 V, X1 = 2,4 V	^I cc			
ZCK=TCK's=LOW 3)			140	A.
CONTION DECOM	1 1			

- 1) Negative HIGH-Eingangsströme werden durch den internen Pull-up-Widerstand verursacht.
- 2) Nicht mehr als einen Ausgang gleichzeitig kurzschließen, Dauer des Kurzschlusses 41 s.
- 1. CLR=LOW, SSNO=LOW, restliche Eingämge HIGH
 - 2. X1=1 Takt (LOW-HIGH-Flanken)
 - 3. CLR HIGH
 - 4. X1= weitere 15 Takte mit Schlußpegel 2,4 V, SSNO=HIGH
 - 5. Messung von I_{CC}

Dynamische Kennwerte

 $(U_{CC} = 5 \text{ V} \pm 0.55 \text{ mV}, \frac{4}{8} = 25 \text{ °C} - 5\text{K})$

		Kurzzeichen	min.	max.	Einheit
Anstiegszeit des ZCK-Aus-			- 1		
gangsimpulses		TLH	1		E = 200
C _L =80 pF±5%, C _C =27 pF±10% 1)				12	ns
CL=200 pF±5%, CC=27 pF±10% 1)				20	ns
Abfallzeit des ZCK-Ausgangs- Empulses		t _{THL}	Į		
CL=80 pF±5%, CC=27 pF±10% 1)		1		11	ns
CL=200 pF±5%, CC=27 pF±10% 1)			ω.	20	ns
Signalverzögerungszeiten	von nach				
R, =500 Ohm+2%, C, =50 pF+10%		1			1
CK: C _{T.} = 80 pF; C _C = 27 pF	READY - WAIT	t _{PLH}		16	ns
		FPHL		19	ns
	ST1,2,3 - WAIT	t _{PLH}	87	26	ns
	Charles and Control of the Control o	tPHL	ļ	24	ns
		1.114			
	ZCK - RESETOL	JT.	}		1
4/3 = 0 V		t _{PLH}	ļ	23	ns
		tPHL		15	ns
4/3 = 5 V		t _{PLH}		20	ns
		t _{PHL}		10	ns
Oszillatorfrequenz	-	fosc	24		MHz

¹⁾Bootstrap-Kondensator zwischen den Anschlüssen C und ZCK.

Die vorliegenden Datenblätter dienen ausschließlich der Information! Es können daraus keine Liefermöglichkeiten oder Produktionsverbindlichkeiten abgeleitet werden. Anderungen im Sinne des technischen Fortschritts sind vorbehelten.

Herausgeber:

veb applikationazantrum elektronik barlin im veb kombinat mikroelektronik

Mainzer Straße 25 Berlin 1035

Telefon: 5 80 05 21, Telex: 011 2981; 011 3055