

Information

DL 8641 DC

Busempfänger- und Treiber-Schaltkreis

Der Schaltkreis DL 8641 DC enthält vier Bustreiber/-empfänger. Er ist für den Einsatz in busorganisierten Datenübertragungssystemen vorgesehen, deren 120 Ω -Datenbus durch einen 180 Ω -Widerstand vom Bus zur Betriebsspannung U_{CC} und einen 390 Ω -Widerstand vom Bus nach Masse abgeschlossen ist. Die Bus-Ausgänge sind Open-Kollektor-Ausgänge mit einer Treiberfähigkeit von 50 mA bei U_{OL} \leq 0,7 V. Die Busempfängereingänge haben eine typische Schaltschwelle von 1,5 V, die Gegentaktausgangsstufen besitzen eine Treiberfähigkeit von 16 mA bei U_{OL} \leq 0,4 V. Mit den NOR-verknüpften Disable-Eingängen G1 und G2 wird die Funktion der integrierten Schaltung (siehe Funktionstabelle) gesteuert.

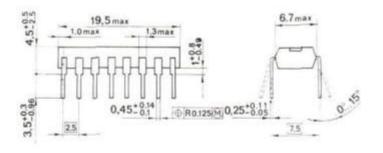
Vorläufige technische Daten

TGL:

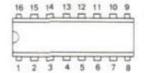
Werkstandard HFO-S 805.61

Bauform:

A1 GG nach TGL 26713/2


Gehäuse:

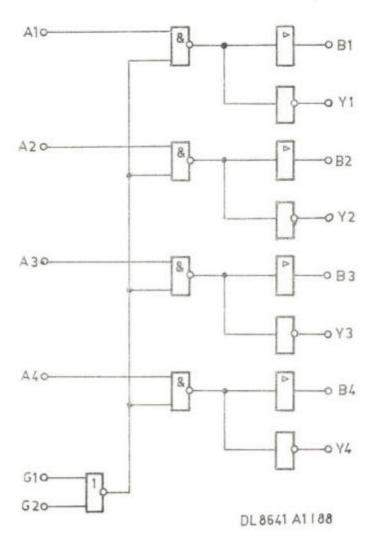
DIL-Plast, 16polig,


Rastermaß: 2,5 mm

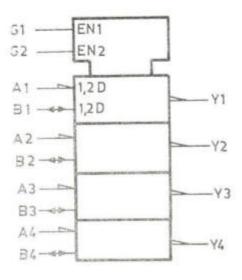
Masse:

≤1,5 g

A1GG TGL 26713/02



Anschlußbelegung:


- 1...Datenbus (bidirekt.) B3
- 2...Dateneingang A3
- 3...Datenausgang Y3
- 4... Datenbus (bidirekt.) B4
- 5...Dateneingang A4
- 6...Datenausgang Y4
- 7...Disable-Eingang G2
- 8...Masse M

- 9...Disable-Eingang G1
- 10...Datenausgang Y2
- 11...Dateneingang A2
- 12...Datenbus (bidirekt.) B2
- 13...Datenausgang Y1
- 14...Dateneingang A1
- 15... Datenbus (bidirekt.) B1
- 16...Betriebsspannung UCC

Blockschaltbild: (pos. Logik)

Logikschaltbild:

DL 8641 A2 188

... Element mit höherer Belastbarkeit

Funktionstabelle:

		Eir	ngänge	Ausgäng	e
Funktion als	Treiber- Eingang	Disable		Empfänger- Treiber- Eingang Ausgang	0 0.00
	A	G1	G2	←B→	Y
Busempfänger	×	н	X	н	L
	×	×	H	Н	L
	×	H	×	L	Н
	×	×	Н	L	н
Bustreiber	н	L	L	L	Н
	L	L	L	Н	L

L...Low-Pegel, H...High-Pegel, X...Pegel beliebig (H oder L)

Grenzwerte:	min.	max.	max.	
Betriebsspannung	U _{cc} 0	7	V	
Eingangsspannung — B-Eingänge — A-, G-Eingänge	U ₁	5,5 7	V	
Verlustleistung, $T_\alpha = +70^{\circ}C$	Ptot	500	mW	
Sperrschichttemperatur	Tj	150	°C	

Betriebsbedingungen:		min.	max.	
Betriebsspannung	Ucc	4,75	5,25	٧
High-Ausgangsstrom (Y-Ausgänge)	—Іон		0,4	mA
Low-Ausgangsstrom — B-Ausgänge — Y-Ausgänge	lou		50 16	mA mA
High-Eingangsspannung — A-, G-Eingänge — B-Eingänge	UIH	2,0 1,7		v v
Low-Eingangsspannung — A-, G-Eingänge — B-Eingänge	U _{IL}		0,8 1,3	v v
Umgebungstemperatur	$T_{\mathfrak{a}}$	0	70	°C

Statistische Kennwerte: ($U_{CC} = 5.0 \text{ V} \pm 0.25 \text{ V}, T_a = 0... + 70 \text{ C}$)

		min.	max.	
High-Ausgangsspannung UCC = 4,75 V,—IOH = 0,4 mA B-Eingänge UIL = 1,3 V, UIH = 1,7 V A-, G-Eingänge UIL = 0,8 V, UIH = 2 V Y-Ausgänge	U _{он}	2,4		V
Low-Ausgangsspannung Ucc = 4,75 V, IoL = 16 mA B-Eingänge UIL = 1,3 V, UIH = 1,7 V A-, G-Eingänge UIL = 0,8 V, UIH = 2 V Y-Ausgänge	UoL		0,4	v
U _{CC} = 4,75 V, I _{OL} = 50 mA U _{IL} = 0,8 V, U _{IH} = 2 V — B-Ausgänge			0,7	٧
High-Eingangsstrom	l _{1H}			
$U_{CC} = 5,25 \text{ V}$ G-, A-Eingänge: $U_{IH} = 7 \text{ V}$ B-Eingänge: $U_{IH} = 4,5 \text{ V}$ $U_{CC} = 0 \text{ V}$, $U_{IH} = 4,5 \text{ V}$			50 100 100	μ Α μ Α
Low-Eingangsstrom	I_{1L}			
$U_{CC} = 5.25 \text{ V}, U_{IL} = 0.4 \text{ V}$ G-, A-Eingänge B-Eingänge			360 100	μ Α
Ausgangskurzschlußstrom ¹) Ucc = 5,25 V, U _{IL} = 0 V — Y-Ausgänge	—los	18	55	mA
Flußspannung der Eingangsdioden Ucc = 4,75 V, —I _{IK} = 18 mA	—U _{IK}		1,5	V
Stromaufnahme²)	Icc		6450	350
$U_{CC} = 5,25 \text{ V}$			50	mÅ

 $^{^{1}}$) Nicht mehr als einen Ausgang gleichzeitig kurzschließen, Dauer des Kurzschlusses ≤ 1 s

 $^{^{2}}$) Disable-Eingänge G1, G2 = 0 V, A-Eingang = 4,5 V, Ausgänge offen

Dynamische Kennwerte: (U $_{CC} = 5.0~V \pm 55~mV,\, T_{\alpha} = 25~^{\circ}C - 5~K)$

		min.	max.	
Signalverzögerungszeiten				
$U_{CC} = 5 \text{ V}, C_L = 50 \text{ pF} \pm 5 \text{ pF},$				
$R_L = .500 \Omega \pm 15 \Omega$				
$G \to B$	TPLH		30	ns
	t _{PHL}		30	ns
$A \rightarrow B$	tPLH		25	ns
	t _{PHL}		15	ns
$B \to Y$	t _{PLH}		35	ns
	TPHL		30	ns

veb halbleiterwerk frankfurt/oder im veb kombinat mikroelektronik

Telefon 460 - Telex 016252 Postfach 379 - Frankfurt (Oder) - 1200

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie, Telefon: 2180