mikroe ektronik

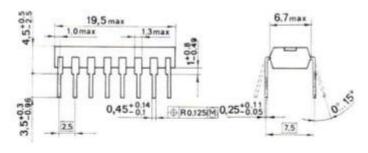
Information

DS 2510 DC

4 Bit-Shifter-Schaltkreis

Der Schaltkreis DS 2510 DC ist ein schneller 4 Bit-Shifter. Er ermöglicht die Verschiebung von 4 Datenbits um 0, 1, 2 bzw. 3 Plätze. Der DS 2510 DC besteht aus 7 Dateneingängen (I_3 bis I3), vier 3-State-Ausgangsstufen (Yo bis Y3), der 3-State-Ansteuerstufe (OE), sowie den Steuereingangsstufen (So, S1) mit denen die Anzahl der zu verschiebenden Plätze bestimmt wird. Das Schalten der Datenausgänge Y in den hochohmigen Zustand erfolgt bei OE = High.

Vorläufige technische Daten:


Gehäuse: 16-polig, DIL-Plast

Rastermaß: 2.5 mm

Bauform: A1 GG nach TGL 26713/02

Masse:

≤1,5 g

A1GG TGL 26713/02

Anschlußbelegung:

1	 Datene	inga	ng 1-3	3

2...Dateneingang I-2

3...Dateneingang I—1

4...Dateneingang 10

5...Dateneingang I1

6...Dateneingang 12

7...Dateneingang 13

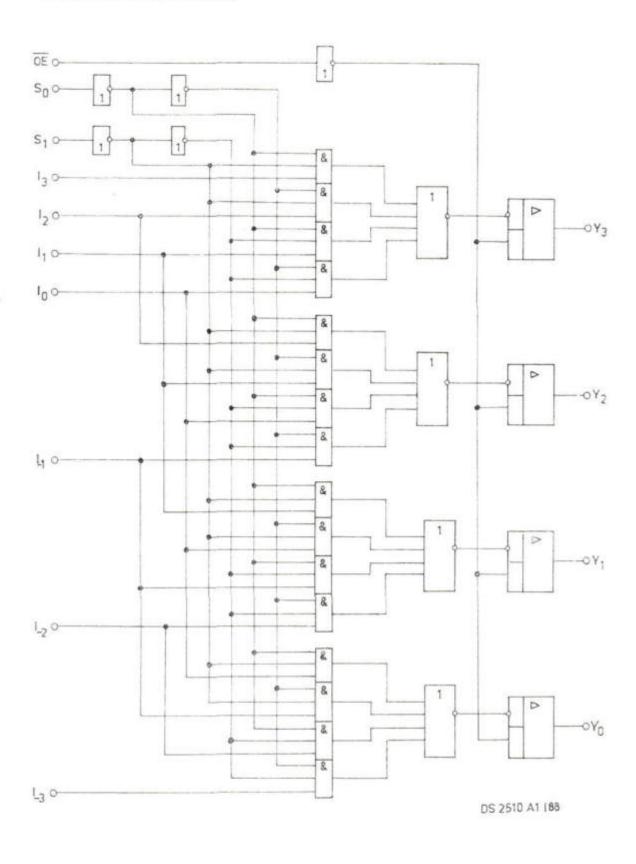
8...Masse

9...Stevereingang S1

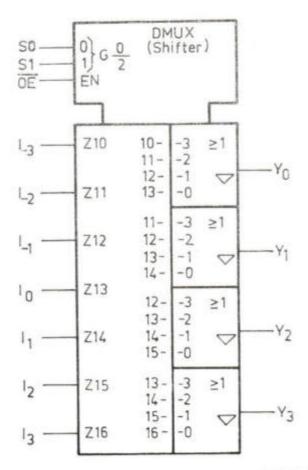
10...Stevereingang SO

11...Datenausgang Y3

12...Datenausgang Y2


13...Enable-Eingang DE

14...Datenausgang Y1


15...Datenausgang Y0

16...Betriebsspannung UCC

Blockschaltbild: (pos. Logik)

Logikschaltbild:

DS 2510 A2 188

Funktionstabelle:

Eingänge									Ausgänge				
OE	S1	S ₀	13	12	I ₁	I ₀	1_1	1_2	1_3	Y3	Y ₂	Y ₁	Yo
Н	×	X	×	X	X	×	×	X	X	Z	Z	Z	Z
L	L	L	D_3	D_2	D_1	Do	X	×	×	D_3	D_2	D ₁	Do
L	L	H	×	D_2	D_1	Do	D_{-1}	×	×	D_2	D_1	D ₀	D_{-1}
L	H	L	×	×	D_1	Do	D_{-1}	D_{-2}	×	D ₁	Do	D_{-1}	D_{-2}
L	H	H	×	X	X	D_0	D_{-1}	D_{-2}	D_3	Do	D_{-1}	D_{-2}	D_{-3}

 $H...High-Pegel;\ L...Low-Pegel;\ X...Pegel\ beliebig\ (Ho.L);\ Z...hochohmiger\ Zustand;\ D_n...Pegel\ des\ n-ten\ Dateneinganges\ bzw.\ Datenausganges$

Grenzwerte:	min.	max.		
Betriebsspannung	Ucc	0	7	V
Eingangsspannung	Uı	_	5,5	V
Ausgangsspannung im 3-State-Zustand	Uoz	_	5,5	V
Verlustleistung ($T_\alpha = 70^{\circ}C$)	P _{tot}	_	0,5	W
Sperrschichttemperatur	T_i	_	150	°C

Betriebsbedingungen:		min.	max.		
Betriebsspannung		Ucc	4.75	5,25	٧
H-Eingangsspannung		UIH	2.0	_	٧
L-Eingangsspannung		UIL	-	0,8	V
H-Ausgangsstrom		—Іон	-	6,5	mA
L-Ausgangsstrom		IOL	_	20	mA
Umgebungstemperatur		Ta	0	70	°C

Statische Kennwerte: (U_CC = 5,0 V \pm 0,25 V; T_α = 0...+70 °C)

		min.	max.	
H-Ausgangsspannung U _{CC} = 4,75 V; U _{IL} = 0,8 V	Uон			
$U_{IH} = 2.0 \text{ V}; -I_{OH} = 6.5 \text{ mA}$		2,4	2,0	٧
L-Ausgangsspannung U _{CC} = 4,75 V; U _{IL} = 0,8 V	UoL			
$U_{IH} = 4.5 \text{ V}; I_{OL} = 20 \text{ mA}$		_	0,5	V
Stromaufnahme $U_{CC} = 5,25 \text{ V}$, alle Eingänge aus 0 V	Icc		95	mA
Ausgangskurzschlußstrom ¹) $U_{CC} = 5,25 \text{ V}; U_{IL} = 0 \text{ V}; U_{IH} = 4,5 \text{ V}$	—los	40	100	mA
L-Eingangsstrom $U_{CC} = 5,25 \text{ V}; U_{1L} = 0,5 \text{ V}$	—IIL			
OE, S ₀ , S ₁ , I ₋₃ , I ₃ ,		-	2	mA
$I_{-2}, I_{-1}, I_0, I_1, I_2$		_	3	mA
H-Eingangsstrom $U_{CC} = 5,25 \text{ V}; U_{IH} = 2,7 \text{ V}$	$I_{\rm IH}$			
\overline{OE} , S ₀ , S ₁ , I ₋₃ , I ₃ ,		_	50	μΑ
I ₋₂ , I ₋₁ , I ₀ , I ₁ , I ₂		_	75	μA
Eingangsstrom bei max. Eingangsspannung $U_{CC}=5,\!25~V;U_{I}=5,\!5~V$	I_1	_	1	mA
Ausgangsstrom bei 3-State	lozh			
$U_{CC} = 5,25 \text{ V}; U_{O} = 2,7 \text{ V}$			50	μA
$U_0 = 0.5 \text{ V}$	—lozt	_	50	μΑ
Flußspannung der Eingangsdiode $U_{CC} = 4.75 \text{ V}$; $I_{IK} = 18 \text{ mA}$	$-U_{IK}$	-	1,5	V

 $^{^{1})}$ Kurzschluß nur an einem Ausgang zulässig, Dauer des Kurzschlusses ${\leq}1$ s.

Dynamische Kennwerte: (U_{CC} = 5,0 V \pm 0,1 V; T_a = 25 °C - 5 K)

Signalverzögerungszeiten

 $R_L = 500~\Omega \pm 15~\Omega$; $C_L = 50~pF \pm 5~pF$

$I \to Y$	tplH	_	12	ns
	f _{PHL}	_	16	ns
$S \to Y$	tplH	_	20	ns
	tpHL	_	17	ns
$OE \rightarrow Y$	t _{PZH}	_	18	ns
	tpZL	_	18	ns
	tpHZ	_	13	ns
	tpLZ	_	18	ns

veb halbleiterwerk frankfurt/oder im veb kombinat mikroelektronik

Telefon 460 - Telex 016252 Postfach 379 - Frankfurt (Oder) - 1200

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie, Telefon: 2180