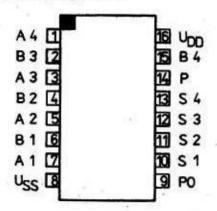
-mikroelektronik

Information



K 561 IM 1 - 4bit Volladdierer

1/87 (10)

Herstellerland: UdSSR

Übersetzung, bearb.

Nicht für Gerätneuentwicklungen (siehe 3. Umschlagseite)

15 B 4	SM	Ρ.	14
2345679 PART PO		S 4 S 3 S 2 S 1	13 12 11 10

Bild 1: Anschlußbelegung und Schaltungskurzzeichen

Bezeichnung der Anschlüsse:

1	A 4	Eingang Bit A 4
2	B 3	Eingang Bit B 3
3	A 3	Eingang Bit A 3
4	B 2	Eingang Bit B 2
5	A 2	Eingang Bit A 2
6	B 1 .	Eingang Bit B 1
7	A 1	Eingang Bit A 1
8	Uss	Bezugspotential

9	PO	Übertragseingang
10	S 1	Summenausgang 1
11	5 2	Summenausgang 2
12	8 3	Summenausgang 3
13	S 4	Summenausgang 4
14	P	Parallel- Übertragsausgang
15	B 4	Eingang Bit B 4
16	· UDD	Betriebsspannung

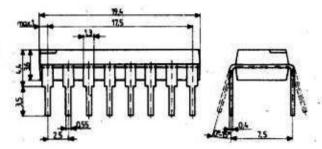


Bild 2: Gehäuseabmessungen K 561 IM 1

Beschreibung

Der K 561 IM 1 besteht aus 4 Volladdiererstusen mit schneller "lookahead"-Übertragsübernahme von Stuse zu Stuse. Zusätzlich vorhanden ist eine Schaltung zur Bildung eines schnellen Parallel-Übertragsausgangssignals, um auch in arithmetischen Einheiten mit mehreren
K 561 IM 1 einen schnellen Betrieb zu ermöglichen. Die Eingänge des K 561 IM 1 umfassen die
4 zu addierenden Bitpaare A 1 ... A 4 und B 1 ... B 4 sowie den Eingang für das Übertragssignal von einer vorausgehenden Stuse. Die Ausgänge des K 561 IM 1 umfassen die 4 Summenausgänge S 1 ... S 4 und den schnellen Parallel-Übertragsausgang, der zur Übertragsbildung
in einer solgenden K 561 IM 1-Stuse verwendet werden kann.

A _i	Bi	P _{i-1}	Si	Pi
L	L	L	L	L
L	L	H	н	
L	н	L	н	L
L	н	H ·	L	F
H	L L	L	н	L
L L L H H	L	H	T.	H
H H	н	L	L	H
H	н	H	н	H

Wahrheitstabelle K 561 IM 1

- 1 = 1 ... 4
- P_{i-1} Übertragsausgang im gegenwärtigen Zustand
- P_i Übertragsausgang im vorhergehenden Zustand

Grenzwerte

Kennwert	Kurzzeichen		min.	max.	Einheit
Betriebsspannung	U _{DD}		-0,5	15	v
Eingangsspannung	UI	427	-0,2	UDD + 0,2	
Eingangsstrom	I	2.8	1	10	mA
Verlustleistung	Ptot	1	1.	200	mW
Verlustleistung je Ausgangstransistor	Py	1	- 1	100	mW

Statische Kennwerte

Kennwert	Kurz- zeichen	Meßbedingungen	min.	max.	Einheit
Betriebsspannung	UDD	08.80	3	15	v
Stromaufnahme	IDD	U _{DD} = 15 V; U _{IH} = 15 V; U _{IL} = 0 V; U _R = 25 °C		20	/UA
A.		$U_{\rm DD} = 15 \text{ V}; \ U_{\rm IH} = 15 \text{ V}; \ U_{\rm IL} = 0 \text{ V}; \ \partial'_{\rm g} = -45 \text{ °C}$		20	/uA
	1	U _{DD} = 15 V; U _{IH} = 15 V; U _{IL} = 0 V; U _a = 85 °C		200	/uA
Eingangsreststrom	[II]	U _{DD} = 15 V; U _{IH} = 15 V; U _{IL} = 0 V; θ'_{a} = 25 °C		0,3	/UA
(80)		$U_{DD} = 15 \text{ V}; U_{IH} = 15 \text{ V};$ $U_{IL} = 0 \text{ V}; \partial_{e} = -45 \text{ °C}$		0,3	/UA
5		$U_{\rm DD} = 15 \text{ V}; \ U_{\rm IH} = 15 \text{ V}; \ U_{\rm IL} = 0 \text{ V}; \ \vartheta_{\rm a} = 85 \text{ °C}$		1,0	/UA
Ausgangsspannung L	n ^{or}	UDD = 10 V; UIH = 10 V; UIL = 0 V		0,05	v
Zasana	No.	U _{DD} = 5 V; U _{IH} = 5 V; U _{IL} = 0 V		0,05	v
Ausgangsspannung H	пон	$U_{DD} = 10 \text{ V; } U_{IH} = 10 \text{ V; } U_{IL} = 0 \text{ V}$ $U_{DD} = 5 \text{ V; } U_{IH} = 5 \text{ V; } U_{IL} = 0 \text{ V}$	9,95		v
Ausgangsstrom L	I or own	U _{DD} = 10 V; U _{IH} = 10 V; U _{IL} = 0 V;	0,25		mA
an den Summen-	IOLSUM	U _{OL} = 3 V; θ_{a} = 25 °C	.,.,		(CTC)
ausgängen		$U_{\rm DD} = 10 \text{ V}; \ U_{\rm IH} = 10 \text{ V}; \ U_{\rm IL} = 0 \text{ V}; \ U_{\rm OL} = 3 \text{ V}; \ \vartheta_{\rm a} = -45 \text{ °C}$	0,3		mA.
8 1		$U_{DD} = 10 \text{ V}; U_{IH} = 10 \text{ V}; U_{IL} = 0 \text{ V};$ $U_{OL} = 3 \text{ V}; \hat{v}_{a} = 85 \text{ °C}$	0,175	1	mA
		$U_{DD} = 5 \text{ V}; U_{IL} = 0 \text{ V}; U_{OL} = 3 \text{ V};$ $U_{A} = 25 \text{ °C}$	0,01		mA
		$U_{\text{DD}} = 5 \text{ V}; U_{\text{IL}} = 0 \text{ V}; U_{\text{OL}} = 3 \text{ V};$ $\tilde{\mathcal{J}}_{\mathbf{a}} = -45 \text{ °C}$	0,0115		mA.
¥	-	$U_{\rm DD} = 5 \text{ V}; U_{\rm IL} = 0 \text{ V}; U_{\rm OL} = 3 \text{ V};$ $\tilde{v}_{\rm a} = 85 ^{\circ}\text{C}$	0,007		mA .
Ausgangsstrom L am Übertrags-	IoLU	$v_{\rm DD} = 10 \text{ V}; v_{\rm IL} = 0 \text{ V}; v_{\rm OL} = 0.5 \text{ V};$ $\hat{v_{\rm a}} = 25 ^{\circ}\text{C}$	0,75		mA
ausgang		$U_{\rm DD} = 10 \text{ V}; U_{\rm IL} = 0 \text{ V}; U_{\rm OL} = 0.5 \text{ V};$ $\vartheta_{\rm a} = -45 \text{ °C}$	0,9		mA
	-	$v_{DD} = 10 \text{ V}; v_{IL} = 0 \text{ V}; v_{OL} = 0.5 \text{ V};$ $v_{a} = 85 \text{ C}$	0,53		mA
		$U_{\rm DD} = 5V; U_{\rm IL} = 0 V; U_{\rm OL} = 0,5 V;$ $\vartheta_{\rm a} = 25 {}^{\circ}{\rm C}$	0,25		mA
		$U_{\rm DD} = 5 \text{ V}; U_{\rm IL} = 0 \text{ V}; U_{\rm OL} = 0,5 \text{ V};$ $\hat{\mathcal{D}}_{\rm a} = -45 ^{\circ}\text{C}$	0,3		mA
×**		$v_{\rm DD} = 5 \text{ V}; v_{\rm IL} = 0 \text{ V}; v_{\rm OL} = 0.5 \text{ V};$ $v_{\rm R} = 85 \text{ °C}$	0,175		mA
Ausgangsstrom H an den Summen-	IOHSUM	$U_{DD} = 10 \text{ V}; U_{IH} = 10 \text{ V}; U_{OH} = 7 \text{ V}; \vartheta_{a} = 25 \text{ °C}$	0,15		mA
ausgängen	1	U _{DD} = 10 V; U _{IH} = 10 V; U _{OH} = 7 V; ϑ _a = -45 °C	0,18		mA
		$U_{DD} = 10 \text{ V}; U_{IH} = 10 \text{ V};$ $U_{OH} = 7 \text{ V}; \vartheta_{a} = 85 ^{\circ}\text{C}$	0,105		mA

Kennwert	Kurz- zeichen	Meßbedingungen	min.	max.	Einhei
Ausgangsstrom H an den Summen- ausgängen	IOHSUM	$U_{DD} = 5 \text{ V}; U_{IH} = 5 \text{ V};$ $U_{OH} = 2 \text{ V}; \vartheta_{e_i} = 25 \text{ °C}$ $U_{DD} = 5 \text{ V}; U_{IH} = 5 \text{ V};$	0,01	-	mA mA
ausgangen	10.	$U_{OH} = 2 \text{ V; } \vartheta_{a} = -45 \text{ °C}$ $U_{DD} = 5 \text{ V; } U_{IH} = 5 \text{ V;}$ $U_{OH} = 2 \text{ V; } \vartheta_{a} = 85 \text{ °C}$	0,007		mA
Ausgangsstrom H am Übertrags-	Тон	U _{DD} = 10 V; U _{IH} = 10 V; U _{OH} = 9,5 V; θ_{A} = 25 °C	0,75		mA .
ausgang		U _{DD} = 10 V; U _{IH} = 10 V; U _{OH} = 9,5 V; θ_{a} = -45 °C	0,9		mA
		U _{DD} = 10 V; U _{IH} = 10 V; U _{OH} = 9,5 V; \mathcal{T}_{a} = 85 °C	0,53		mA.
		$U_{\rm DD} = 5 \text{ V}; \ U_{\rm IH} = 5 \text{ V};$ $U_{\rm OH} = 4.5 \text{ V}; \ \theta_{\rm R} = 25 \text{ °C}$	0,25		mA
		U _{DD} = 5 V; U _{IH} = 5 V; U _{OH} = 4,5 V; θ_{a} = -45 °C	0,3		mA.
		$U_{\rm DD} = 5 \text{ V}; U_{\rm IH} = 5 \text{ V}; U_{\rm OH} = 4,5 \text{ V}; \theta_{\rm a} = 85 \text{ °C}$	0,175		m.A.
Ausgangsspannung L bei kritischer	nor	U _{DD} = 10 V; U _{IL} = 3,0 V;		2,9	V
Eingangsspannung an einem Eingang	- 1	$U_{DD} = 10 \text{ V}; U_{IL} = 3.0 \text{ V};$ $v_{a} = -45 \text{ °C}$		2,9	ν
		$U_{\rm DD} = 10 \text{ V}; U_{\rm IL} = 2.9 \text{ V};$ $\psi_{\rm a}^{\prime} = 85 \text{ °C}$		2,9	٧
	8	$U_{\rm DD} = 5 \text{ V}; U_{\rm IL} = 1,5 \text{ V};$ $\phi_{\rm B} = 25 \text{ °C}$	-	0,95	v
		$U_{DD} = 5 \text{ V}; U_{IL} = 1,5 \text{ V};$ $\mathcal{E}_{a} = -45 \text{ °C}$ $U_{} = 5 \text{ V}; U_{} = 1.4 \text{ V};$	1	0,95	v
		$U_{\rm DD} = 5 \text{ V}; U_{\rm IL} = 1.4 \text{ V};$ $v_{\rm A}^{\circ} = 85 \text{ °C}$ $U_{\rm DD} = 10 \text{ V}; U_{\rm IH} = 7.0 \text{ V};$		0,,,,	-
Ausgangsspannung H bei kritischer	пон	JD = 25 °C UDD = 10 V; UIH = 7,1 V;	7,2		V
Eingangsspannung		-45 °C	7,2	-	V
	hete	√2 = 85 °C	3,6		V V
		$Q_{a} = 25 ^{\circ}C$ $U_{DD} = 5 V; U_{TH} = 3,6 V;$	3,6		v
		U _{DD} = 5 V; U _{IH} = 3,5 V; Va = 85 °C	3,6		v

Dynamische Kennwerte

Kennwert	Kurz- zeichen	Meßbedingungen	min.	mex.	Einheit
Verzögerungszeit	t _{PLH} :	$U_{DD} = 10 \text{ V}; \vartheta_{a} = 25 ^{\circ}\text{C}$		270	ns
vom Summeneingang	t _{PHL}	UDD = 10 V; 3 = -45 °C	1	270	ns
zum Ubertrags-	THE	UDD = 10 V; & = 85 °C		380	ns
ausgang	0.00	Upp = 5 V; % = 25 °C	1	750	ns
4-7-2-7-2		Upp = 5 V; 9 = -45 °C		750	ns
14		UDD = 5 V; 8 = 85 °C		1050	na na
Verzögerungszeit	t _{PLH} ;	UDD = 10 V; 9a = 25 °C	1	140	ns
vom Ubertrags-	tPHL	Unn = 10 V; & = -45 °C		140	ns
eingang zum	1.11.11	UDD = 10 V; & = 85 °C		200	ns
Übertragsaus-	8 65	$U_{DD} = 5 \text{ V}; \vartheta_{a} = 25 \text{ °C}$		300	na
gang		UDD = 5 V; 9a = -45 °C		300	ns
		UDD = 5 V; %a = 85 °C		420	ns
Verzögerungszeit	t _{PLH} :	U _{DD} = 10 V; 0 = 25 °C		1100	ns
vom Summeneingang		UDD = 10 V; $\theta_{a} = -45$ °C	3/8	1100	na
Ubertrags-	1	Unn = 10 V: 9 = 85 °C		1540	ns
eingang zum Sum-		Unn = 5 V; 9 = 25 °C		2100	ns
menausgang		Upp = 5 V; 3 = -45 °C	a part of	2100	ns
		UDD = 5 V; 3 = 85 °C	142	2940	ns
Eingangskapazität	c _I	U _{DD} = 10 V		15	pF

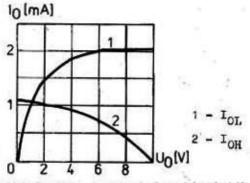


Bild 3: Typ. Ausgangscharakteristik der Summenausgänge II und IV bei UDD = 10 V und % = 25 °C

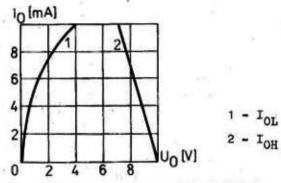


Bild 4: Typ. Ausgangscharakteristik des Übertraggausganges bei UDD = 10 V und a = 25 C

Bild 5: Typ. Ausgangscharakteristik der Summenausgänge I und III bei UDD = 10 V und Va = 25 °C

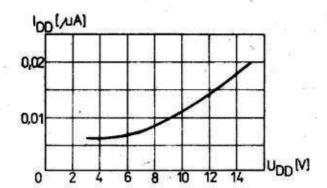


Bild 6: Typ. Abhängigkeit der Stromaufnahme im L-Zustand von der Betriebsspannung bei $\mathscr{T}_a = 25$ °C

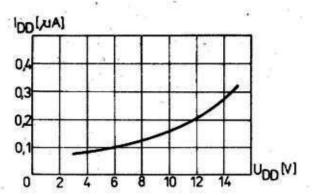


Bild 7: Typ. Abhängigkeit der Stromaufnahme im I-Zustand von der Betriebsspannung bei 3 = 85 °C

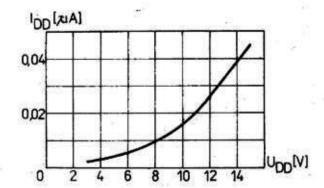


Bild 8: Typ. Abhängigkeit der Stromaufnahme im H-Zustand von der Betriebsspannung bei $\vartheta_{\bf a}=25~{\rm ^{OC}}$

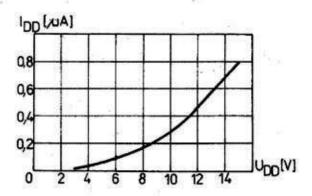


Bild 9: Typ. Abhängigkeit der Strömaufnahme im H-Zustand von der Betriebsspannung bei Ja = 85 °C

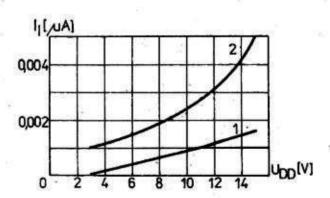


Bild 10: Typ. Abhängigkeit des Eingangsreststromes von der Betriebsspannung bei $V_a = 25$ °C (1) und $V_a = 85$ °C (2)

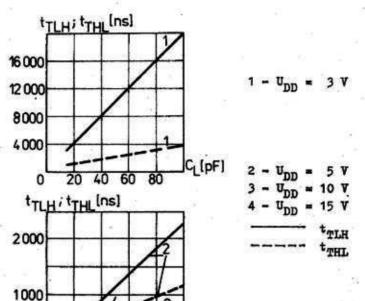
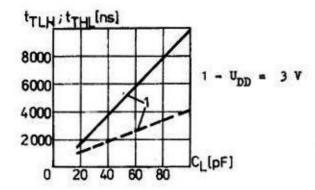



Bild 11: Anstiegs- und Abfallzeit der Ausgangsimpulse der Summenausgänge II und IV als Funktion der Lastkapazität bei $\vartheta_{\mathbf{a}} = 25.00$

CL[pF]

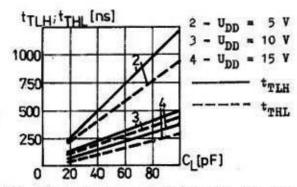


Bild 12: Anstiegs- und Abfallzeit der Ausgangsimpulse der Summenausgänge I und III als Funktion der Lastkapazität bei \hat{v}_{a} = 25 °C

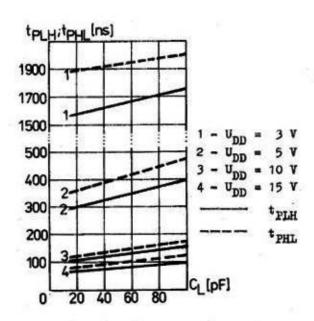


Bild 14: Typ. Verzögerungszeit von den Summeneingängen zum Übertragsausgang als Funktion der Lastkapazität bei $\mathcal{F}_a = 25$ C

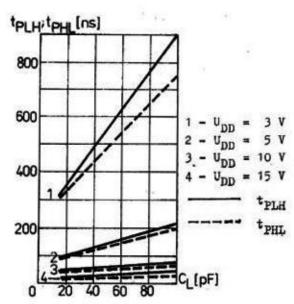


Bild 13: Typ. Verzögerungszeit vom Übertragseingang zum Parallel-Übertragsausgang als Punktion der Lastkapazität bei $\mathcal{V}_{a}=25$ °C

Bild 15: Typ. Verzögerungszeit vom Summeneingang und Übertragseingang zu den Summenausgängen als Funktion der Lastkapazität bei Va = 25 °C

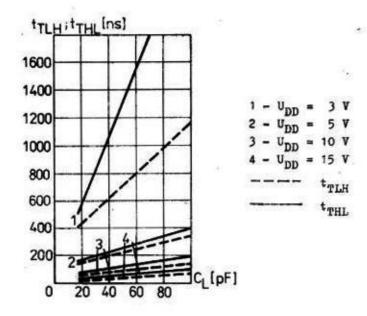


Bild 16: Typische Zeit des Übergangs des Schaltkreises vom lgischen Zustand L in den logischen Zustand H bzw. vom logischen Zustand H in den logischen Zustand L zum Übertragsausgang als Funktion der Lastkapazität bei $\hat{V}_{\rm a}$ = 25 °C

Literatur

> Die vorliegenden Datenblätter dienen ausschließlich der Information!
> Es können deraus keine Liefermöglichkeiten oder Produktionsverbindlichkeiten abgeleitet werden. Änderungen im Sinne des technischen Fortschritts sind vorbehalten.

Herausgeber

veb applikationazantrum alaktronik barlin

Mainzer Straße 25 Berlin 1035

Telefon: 5 80 05 21, Telex: 011 2981; 011 3055