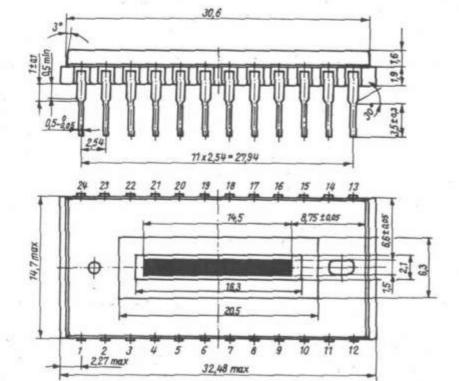
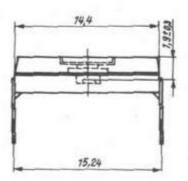
mikroelektronik

Information


L 133 C


1/89 (14)

Hersteller: VEB Werk für Fernsehelektronik Berlin

Die L 133 C ist eine monolithische selbstabtastende, lichtempfindliche Zeile mit 1024 Sensorelementen.

Sie ist für optische Erkennungssysteme bestimmt. Neben den Sensorelementen beinhaltet das Bauelement ein Ubertragungsgate, Schieberegister, Ladungsdetektoren und Ausgangsverstärker, Takttreiberschaltung, Dunkel- und Hellreferenzschaltung.

Kenngrößen ¹⁾ bei å = 25 °C; f _{DAT} =	5 MHz; tir	t = 7 ms min.	typ.	max.	
Sättigungsausgangsspannung	· Usat	1	2	-	- ν
Dunkelsignal	DS				
DS-Gleichspannungskomponente	DSDC				
Niederfrequenzkomponente	DSNF	-	-	5	mV/ms
Hellsignaldifferenz2)	PRNU	-	-	240	mV .
Dynamikbereich	DR				
bezogen auf Spitze/Spitze-Rauschen		500	-	-	
bezogen auf Effektiv-Rauschen		- 2500	-	-	
Dunkelsignaldifferenz	DSNU	-	-	20	mV/ms
Empfindlichkeit3)	S	1,8	3	_	V/µJ cm ⁻²
Differenz zwischen A und B				9	(bei klarem Fenster)
im Videosignal ⁴⁾	M	-	-	160	mV
Gleichspannungsdifferenz	MDC	-	-	2	v

¹⁾ Normlichtart A mit Pilter BG 38 (2 mm dick)

Statische Betriebswerte		min.	max.	_	Informationswerte bei 3a	= 25 °	o	
ersorgungsspannung der Ausgangsverstärker	u _{DD}	13,5	14,5	٧	Wirkungsgrad der Ledungsübertregung	CTE	0,99999	Ohm
Versorgungsstrom der	40				Ausgangsimpedanz	Z	750	
Ausgangsverstärker	IDD	-	25	mA	Ausgangsgleichspannungs-			
Versorgungsspannung					pegel	UO	8	Λ
der Takttreiber	UCD	13,5	14,5	V	max. Bildpunkt-	12700		19000
Versorgungsstrom			0.042	SAMPLY	ausgabefrequenz ⁶⁾	PDAT	THUX 20	MHz
der Takttreiber	ICD		15	mA				
Spannung für die	45				5) Eingangskapazitäten:	C _X ≈ 15	O pP;	2
Schieberegister	UT	5,5	6,5	V	C _T ≈ 350 pF	-		
Spannung für die					6) fDAT = 2 . fTransport			
Eingangsdiode	UEi	10,5	bis 12	V	19 10 10 10 10 10 10 10 10 10 10 10 10 10		0	
Substrat (Masse)	USS	0		A	Grenzwerte bei & = -25	bis 70	C	
Impulsbetriebswerte					Spannungen an den Anschlüssen 1, 2, 3, 4,	-	min. me	II.
Low-Wert vom Übertragungs					8, 9, 11, 12, 14, 15, 16			
und Transporttakt5)	U _{GXL}	0	0,5	Α	17, 18, 21, 22, 23, 24		0,3 1	8 7
High-Wert vom Übertra-	u.u				Spannung am Anachluß 13		0	A
gunge- und Transporttakt	U _{GXH}	11	13	٧	Anschlüsse 5, 6, 7, 10, 19, 20	nicht	beschalte	n
Phasenlage der Takt-	uan							
spannungen siehe Seite 5					Verlustleistung Takttreiber	$\mathtt{P}_{\mathtt{D}}$	- 30	00 mW

²⁾ gemessen bei UVIDEO = 800 mV

³⁾ Für Normlichtert A mit Filter BG 38 (2 mm dick)ergibt sich folgender Umrechnungsfaktor zwischen strahlungstechnischen und lichttechnischen Einheiten: 1 μW/cm² = 3,5 lx 1 lx = 0,29 μW/cm² (Bestrahlungsstärke, gemessen im Bereich von 560 bis 990 nm) Die Bestrahlung ergibt sich aus Bestrahlungsstärke multipliziert mit der Integrationszeit 1 μW/cm² · s = 1 μJ/cm²

⁴⁾ Diese Differenz kann durch externe Videosignalverstärkungsänderung ausgeglichen werden.

•Verlustleistung Verstärker	PA	-	350	mW	
Bildpunktausgabe- frequenz	fDAT	12	-	MHz	
Betriebstemperatur- bereich	ð _a	-25	70	°C	
Lagerungstemperatur- bereich über eine Zeit von 1 Monat	Satg	-50	100	°C	

Anwendungshinweise

Das Bauelement L 133 C ist mit internen "Sample und Hold"-Stufen ausgerüstet. Durch kapazitätsarmes Überbrücken der Anschlüsse 2 und 3 sowie 21 und 22 direkt an der Passung ist eine Bildklemmung möglich. Die Signalausgänge liefern dann bei dieser Betriebsart bildpunktgeklemmte Videosignale. Ohne diese Anschlußüberbrückung werden Videosignale ohne Bildpunktklemmung ausgegeben. Bei dieser Betriebsart ist an die Anschlüsse 2 und 22 eine Gleichspannung von 10 bis 14 V zu legen.

Steckfassung: 24 pol. IS-Fassung, Form 112/24 nach TGL 36 665.

MaSangaben sum Strahlungsempfangsteil und Chip

Abmessungen der Sensoren 13 µm x 13 µm (1024 = 13,3123 mm)

8,75 ±0.05

Mittenabstand der Sensoren 13 µm

Abstand von der Oberfläche der Glasscheibe bis zur

Chipoberfläche 1,9 ±0,3

ChipabmaBe 14.5 x 1.5 Abstand des Chips von der

oberen Gehäusekante 6,6 ±0,05

Abstand des Chips von der rechten Gehäusekante

Gehäusesusführung: 24poliges DIL-Gehäuse

Unterseite: Keramik

Oberseite: Plast mit Fenster

Oberfläche der Anschlüsse: vergoldet

Masse: 3,4 g

Bauform: 21.2.3.2.84 nach TGL 26 713

Standard: TGL 55 108

PIN	Belegung	Kurzbe- zeichnung
1	Videoausgang A	VIDEO out A
2	Gate des Sample und Hold Transistors A	USHA
3	Sample und Hold Takt- ausgang A	SH _{out} A
4	Versorgungsspannung für Takttreiber	n ^{CD}
5	nicht anschließen	NC
6	nicht anschließen	NC
7	nicht anschließen	NC
8	Versorgungsspannung für Takttreiber	ucD
9	Signalausgang "Ende der Abtastung"	EOSout
10	nicht anschließen	NC
11	Gleichspannungsgate Schieberegister A	UT
12	Eingengsdiode zur Erzeugung des Weiß-Referenzpegels und Amplitude des Signals "EOS"	UEi
13	Masse (Substrat)	Uas
14	intern nicht beschaltet	NC
15	Ubertragungsgate	UGX
16	Taktgate der Schieberegister	UGT
17	Gleichspannungsgate Schieberegister B	UT
18	Versorgungsspannung	nDD
19	nicht anschließen	NC
20	nicht anschließen	NC
21	Sample und Hold Taktausgang	B SHout B
22	Gate des Sample und Hold Transistors B	USHB
23	Videoausgang B	AIDEO ont
24	Versorgungsspannung	n ^{DD}

Punktionsbeschreibung

Lichtempfindlicher Teil

Die in einer Reihe angeordneten 1024 lichtempfindlichen Elemente sind durch geeignet dotierte Gebiete voneinander getrennt. Das einfallende Licht dringt nach Passieren einer transparenten SiO₂-Schicht in das Silizium ein.

Die absorbierten Photonen erzeugen Elektronen-Loch-Paare. Während die Löcher zum Substrat abfließen, werden die fotogenerierten Elektronen von den Sensorelementen gesammelt und den (gegen Licht abgeschirmten) Speicherzellen zugeführt.

Die akkumulierte Ladung hängt linear von der Beleuchtungsstärke und der Integrationszeit ab.

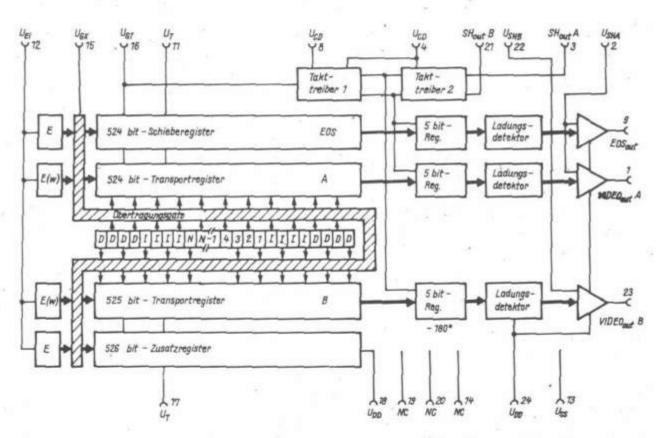
Ubertragungagate

Die Speicherzellen sind von den beiden BCCD-Schieberegistern durch ein Gebiet getrennt, das vom Übertragungsgate gesteuert wird. Bei H-Pegel am Übertragungsgate kann die fotogenerierte Ladung aus den Speicherzellen in die unter den Speichergate's der Schieberegister befindlichen Halbleitergebiete fließen. Der zeitliche Abstand zweier aufeinanderfolgender H-Impulse am Übertragungsgate bestimmt die Bestrahlungszeit der lichtempfindlichen Sensorelemente.

Schieberegister

Es sind insgesamt vier BCCD-Analogschieberegister angeordnet. Dazu zählen die Transportregister A und B. das EOS-Register und ein Zusatzregister. Von den Transportregistern

wird eine aus den Speicherzellen eingespeiste Signalladung zu den Ladungsdetektoren transportiert. Die Transportregister sind so angeordnet, daß die Ladungen der mit ungerader Zahl bezifferten Sensorelemente (1,3,...1023) . in das Register A; die Ladungen der mit gerader Zahl bezifferten Sensorelemente (2,4, ... 1024) in das Register B eingelesen werden. In den Anfang des EOS-Registers wird mit jede H-Impuls am Übertragungsgate eine Ladung eingelesen, welche nach insgesamt 529 Schiebetakten in den EOS-Ladungsdetektor eingegeben wird. Das detektierte und verstärkte EOS-Signal zeigt das Ende des Auslesens der gesamten Zeile an. Das Zusatzregister dient der Verbesserung des Dunkelsignalverhaltens.


Ledungsdetektoren und Ausgangsverstärker

Die von den Registern A und B transportierten Signalladungen werden von zwei Ladungsdetektoren in zur Größe der Ladung proportionale Spannungssignale umgewandelt.

Nach jedem Ladungsdetektor sind Ausgangsverstärker angeordnet. Diese werden durch zwei MOS-Transistoren und einem dazwischenliegenden "Sample- und Hold"-Transistor gebildet. An den Videoausgängen erscheinen die der Beleuchtungsstärke proportionalen Spannungssignale der mit ungerader oder gerader Zahl be-

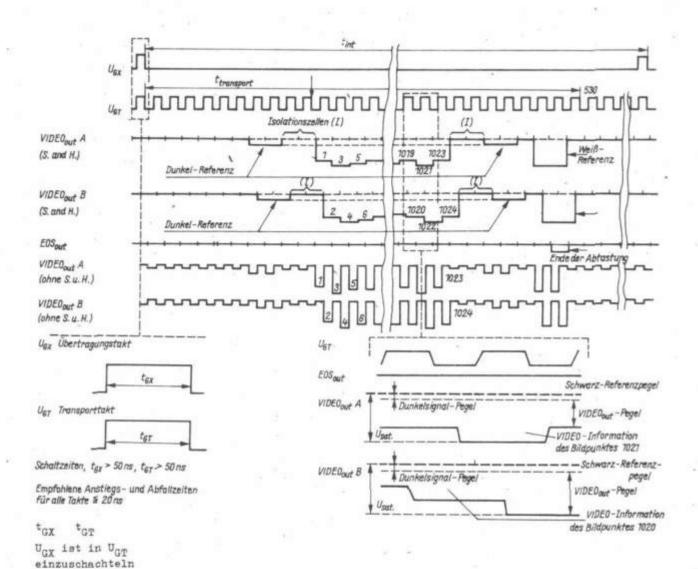
zifferten Sensorelemente. Nach dem Übernahmeimpuls $U_{\rm GX}$ sind 10 Schieberegistertakte $U_{\rm GT}$ erforderlich, damit die erste Bildpunktinformation am Ausgang zur Verfügung steht.

Ein dritter-Ladungsdetektor und ein Ausgangsverstärker mit "Sample- und Hold"-Stufen ist an das EOS-Register angeschlossen und erzeugt am Ende des Auslesevorganges ein Spannungssignal.

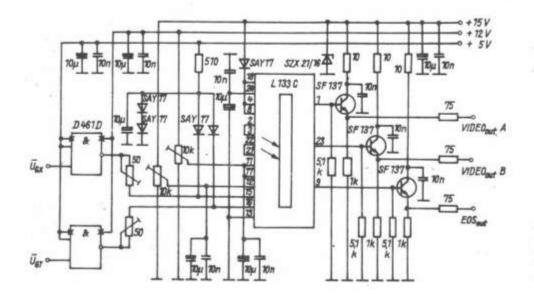
E = Bingangediode I = Isolationszellen D = Dunkelsignelsellen E(w) = Eingangsdiode für Weißsignaleingabe 1...N= 1024 Strahlungsempfangssensoren

Blockschaltbild

Takttreiberschaltung

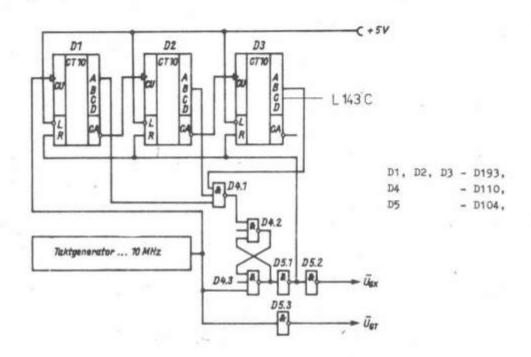

Diese Schaltung gestattet den Betrieb der L 133 C mit nur 2 externen Taktspannungen

- einem Rechteck-Transporttakt, welcher die Auslesegeschwindigkeit der Videodaten aus dem Sensor steuert und
- einem Übertragungstakt, welcher die Integrationszeit des Sensor steuert.

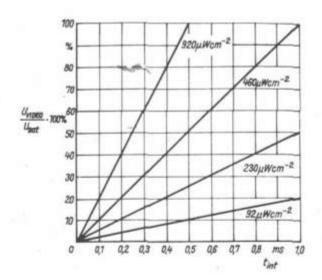

Dunkel- und Hellreferenzschaltung

Vier zusätzliche Sensorelemente an beiden Enden der Sensorzeile werden mit einer lichtundurchlässigen Metallschicht bedeckt. Sie erzeugen ein Dunkel-Referenzsignal (keine Belichtung), welches von beiden Enden der Zeile auf den Videoausgang übertragen wird (im Blockdiagramm, Seite 4, mit "D" bezeichnet).

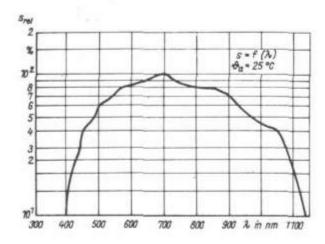
Außerdem sind am Ende der Sensorzeile Referenzpegelgeneratoren für ein Hellreferenzsignal integriert (im Blockdiagramm, Seite 4, mit "E(w)" bezeichnet). Diese Referenzpegel sind Bezugssignale für die Ausgangssignalgewihnung sowie für weitere Signalverarbeitung.



Impulsdiagramm der Taktimpulse und Ausgangssignale



D461D, SF 137, SZX 21/16, SAY 17,


Beschaltungsvorschlag für die L 133 C (Sample und Holdbetrieb)

Schaltungsvorschlag: Taktimpulserzeugung L 133 C (Synchronbetrieb)

typische Werte für L 133 C mit U_{SAT} = 1,50 V im angegebenen Spektralbereich gilt für die Bestrahlungsart der Umrechnungsfaktor
1 lx = 0,29 µWcm⁻²
Bestrahlung mit Normlichtart A und Filter BG 38 (2 mm dick), gemessen im Bereich 560 bis 990 nm.

Mittelwert aller Pixel der Sensorzeile

Änderungen vorbehalten!

Die vorliegenden Datenblätter dienen ausschließlich der Information! Es können daraus keine Liefermöglichkeiten oder Produktionsverbindlichkeiten abgeleitet werden. Anderungen im Sinne des technischen Fortschritts sind vorbehalten.

Herausgeber. veb applikationazentrum elektronik berlin im veb kombinet mikroelektronik

Mainzer Straße 25 Berlin, 1035

Telefon: 5 80 05 21, Telex: 011 2981 011 3055