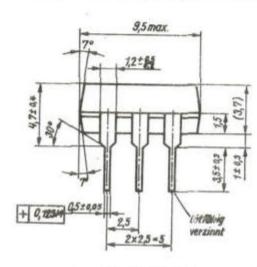
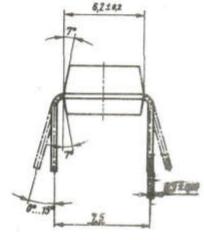
mikroelektronik

Optoelektronischer Koppler MB 104

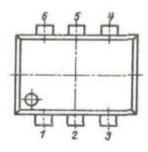
Prüfzertifikat VDE 0883

Der optoelektronische Koppler MB 104 besteht aus einer IRED im Eingangskreis und einem planaren npn-Si-Fototransistor mit und ohne Basisanschluß im Ausgangskreis. Er dient zur galvanischen Trennung von Stromkreisen mit hohen Potentialdifferenzen und ist vorwiegend für den Einsatz in der MeS-, Steuerund Regelungstechnik vorgesehen.


Für den Koppler MB 104 gelten folgende Typbezeichnungen:

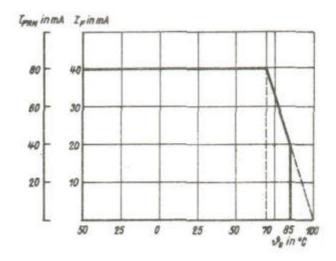

MB 104/4 A-F) MB 104/5 A-F }

mit herausgeführter Basis

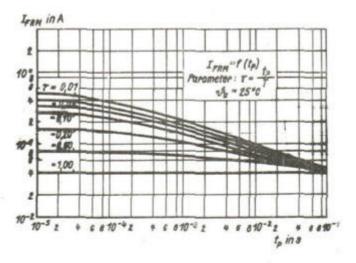

MB 104/6 A-F

ohne herausgeführter Basis

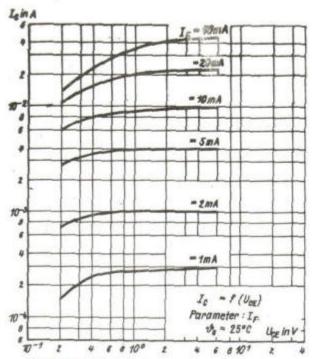
Die unterstrichenen Maße sind zu prüfen!

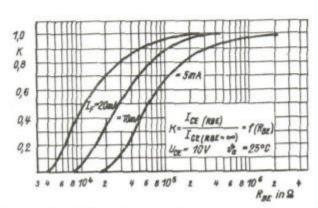

Anschluß	Belegung
1	IRED-Anode
2	IRED-Katode
3	nicht belegt
4	Pototransistor-3mitter
5	Pototransistor-Kollektor
6	Pototransistor-Basis bzw. nicht belegt

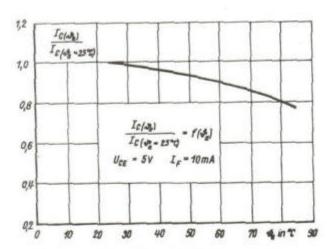
Masse: 0,5 g Standard: TGL 36609

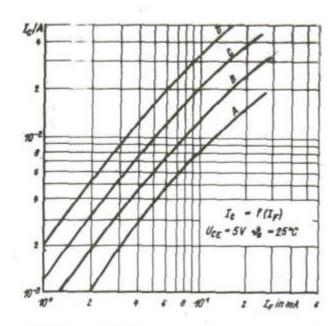

Kenngrößen bei & =	25 °C			
Durchlaßgleich-		min	MAX	
bei Ip = 40 m.	$\mathtt{U}_{\mathbf{F}}$		1,5	A
Sperrgleichstron bei U _R = 5 V	IR	_	10	μA
Kollektor-Emitter- Dunkelstrom bei Ip = 0	п			ACC.
U _{CE} = 10 V	ICEO	-	50	pA
Kollektor-Basis- Dunkelstrom bei Ip = 0				
$U_{CB} = 70 \text{ V}$	ICBO	-	100	piA
Emitter-Kollektor- Dunkelstrom bei Ip = 0	OBO			F-13
$U_{EC} = 6 V$	IECO	-	10	μА
Kollektor-Emitter-	500			****
Strom bei Ip = 10 mA				
U _{CE} = 5 V	ICE(H	()		
270	A	4	8	mA
	B	10,0	12,5	mA
}	D	16,0	32,0	mA mA
auf Anfrage		24,0	48,0	mA.
bei $I_p = 3.2 \text{ mA}$			10000000	547 K
$U_{CE} = 0.4 V$	ICE(H)		
	A, B	0,2	Ī	mA. mA
D,	E. F	1.6	-	mA
Isolationswiderstand	(5, 2	auf An	iruge)	
bei U _{IO} = 0,5 kV	RIO	100	-	GΩ
Isolationsstrom	IIO	-	100	nA
Verzögerungszeit	ta	-	5	ha
Impulsanstiegszeit	tr	-	10	ps
Speicherzeit	ts	-	1,5	ha
Impulsabfallzeit	+		4,01)	ha
Grenzwerte	tf	-	10	μв
Eingangskreis: Durchlaßgleichstrom ²)	_	40	mA
Cod decondumph 1 - 0				
strom, periodisch3) Spitzendurchlaß-	IFRM	-	80	mA
strom, nicht periodic (tp = 1 µs;	sch			
2 min Pause)	IFSM	-	3	A
Sperrgleichspannung	UR	-	6	Α
Spitzensperrspannung	RRM	-	6	V
Ausgangskreis: Kollektor-Emitter- Spannung	UCEM			
MB 104/4 A.	D	-	70	V
MB 104/5 A MB 104/6 A	D	_	35 35	V
Emitter-Basis-	0.000		22	*
Spannung4)	UEBO	-	6	V
Emitter-Basis-				
Spitzenspannung ⁴) Verlustleistung ⁵)	UEBM	-	6	V.
Koppler	Ptot	-	200	mW
Spitzenisolations-				
Spannung ⁶)	UIORM	-	4,4	kV_
#A1	TOTAL		2.5(0.37)	

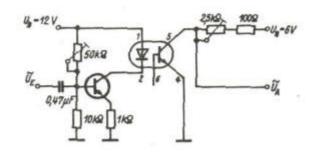
Betriebstemperatur- bereich	3.	-55	+85	°C
Lagerungstemperatur- bereich	Satg	+5	+35	°C
Lagerung bis zu 30 Tage	n onte	-55	+125	°c
Kriechstrecke	2.6		≧ 8,4	mm
Luftstrecke			€ 6,9	mm

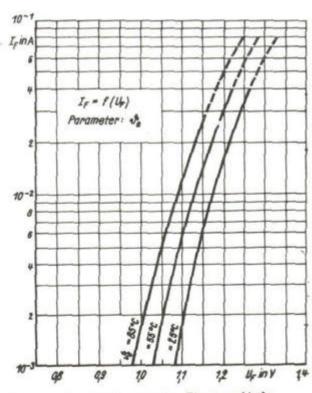

- 1) gilt nur für Kollektor-Emitter-Strom-gruppen E und F
- 2) bei einer Temperatur bis ≤ 70 °C; für 70 °C < 3a ≤ 85 °C Reduktion um 1,33 mA/K
- 3) bei einer Temperatur big ≤ 70 °C; für 70 °C < ϑ_a ≤ 85 °C_tReduktion um 2,67 mA/K, t_p = 50 μs; π^D = 1 : 2 4) gilt nur für Koppler MB 104/4; MB 104/5
- 5) bei \$\dagge_a = 25 °C; für 25 °C < \$\dagge_a \geq 85 °C,</p> Reduktion um 2,67 mW/K
- innerhalb 1 min; gilt nur für Standard-bezugsatmosphäre nach TGL 20 618/02


Abhängigkeit des Durchlaßgleichstromes bzw. des periodischen Spitzendurchlaßstromes von der Umgebungstemperatur

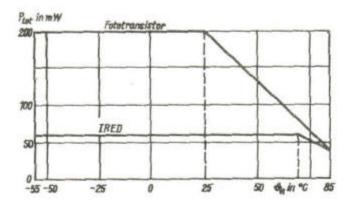

Durchlaßspiczenstrom der Eingangsdiode des Kopplers bei einer Umgebungstemperatur \$\textstyle\alpha = 25 \ OC in Abhängigkeit der Impulsdauer Parameter: Tastverhältnis


Mittlerer Kollektorstrom des Ausgangstransistors beim Koppler in Abhängigkeit der Kollektor-Emitter-Spannung Parameter: Durchlaßstrom T

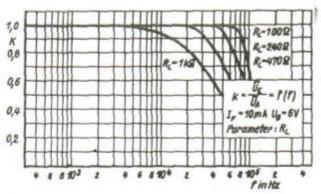

Normierter Kollektorstrom in Abhängigkeit des Basis-Emitter-Widerstandes beim Koppler Parameter: Durchlaßstrom Ip

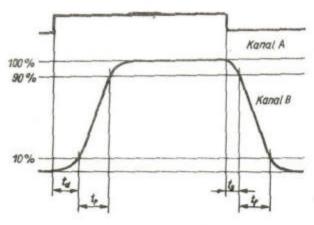


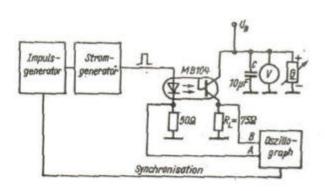
Mittlerer normierter Kollektorstrom des Ausgangstransistors beim Koppler in Abhängigkeit der Umgebungstemperatur

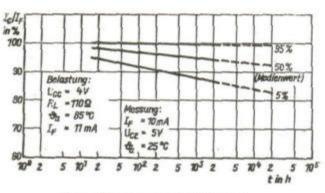


Mittlerer Kollektorstrom des Ausgangstransitors beim Koppler in Abhängigkeit des Durchlaßstromes der Eingangsdiode




Mittlerer Durchlaßstrom der Eingangsdiode des Kopplers in Abhängigkeit von der Durchlaßspannung. Parameter: Umgebungstemperatur &


Abhängigkeit der Verlustleistung von der Umgebungstemperatur


Spannungsübertragungsverhältnis des Kopplers als Funktion der Frequenz in der vorherigen Schaltung, Parameter: Kollektorwiderstand R_L

Definition der Schaltzeiten

Meßschaltung zur Ermittlung der dynsmischen Kenngrößen

Stromibertragungsverhältnis als Funktion der Belastungszeit $\frac{I_G}{I_B} = f(t)$

Änderungen vorbehalten! Redaktionsschluß Mai 1986

veb werk für fernsehelektronik berlin im veb kombinat mikroelektronik

DDR - 1160 Berlin, Ostendstraße Telefon: 6 38 30, Telex: 112 007

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Telex: BLN 114721 elei