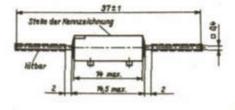
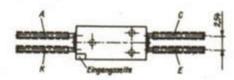
mikreektronik

Information

MB 106


2/87 (11)

Hersteller: VEB Werk für Fernsehelektronik Berlin


Optoelektronischer Koppler

Der optoelektronische Koppler besteht aus einer Galliumarsenid-Lumineszenzdiode als Strahler und einem Silizium-npn-Fototransistor als Empfänger.

Er dient zur galvanischen Trennung von Stromkreisen mit hohen Potentialdifferenzen und ist vorwiegend für den Einsatz in der Steuer- und Regelungstechnik vorgesehen.

Masse

2 g

Standard: TGL 43 403

Schaltzeichen nach TGL RGW 661-77

Bild 1: Gehäuse

Kenngrößen bei va = 25 °	C zeichen	min.	typ.	max.	Einheit
Kollektor-Emitter- Strom					
bei Ip = 0 mA					
U _{CE} = 35 V	ICEO	-	-	0,1	/ua
Kollektor-Emitter-Strom					(4)
bei Ip = 10 mA		1141727			11000
UCE = 0,8 V	ICE(H)	2,0	-	-	mA
Grundtyp \bei	ICE(H)	2,0	-	5,0	mA
Gruppe A Ip = 10 mA	ICE(H)	4,0	-	8,0	mA.
Gruppe B (UCE = 5,0 V	ICE(H)	6,3		12,5	mA
Gruppe C)	ICE(H)	10,0	-	20,0	mA
	0.00				
Durchlasgleichspannung					
bei Ip = 50 mA	u _F	-	-	1,5	v
Sperrgleichstrom bei U _R = 3 V	I_R	-	-	10	/UA
Isolationswiderstand bei U _{IO} = 0,5 kV	RIO	10	-		0.82
Schaltzeiten ¹⁾ bei I _{CE(H)} = 2 mA					
UCC = 20 V und R _L = 100 Ω					
Impuls-Anstiegszeit	+	-	-	10	/us
Impuls-Abfallzeit	tf	-	-	10	us
Verzögerungszeit	t _d		-	3	/us
Speicherzeit	ts	-	-	1	/us
100					
Grenzwerte	Kurzzeichen	min.		mex.	Einheit
Durchlasgleichstrom ²)					
bei v_a^9 = -40 bis 25 °C	Ip	-		100	mA
Spitzendurchlaßstrom, 3) periodischer					
bei 2 = -40 bis 25 °C	IPRM	-		200	Acr
Sperrgleichspennung					
bei $v_a^0 = -40$ bis 85 °C	u_R	-		3 -	v
Spitzensperrspennung, periodische					
bei v_{a}^{0} = -40 bis 85 °C	URRM	-		3	V
Kollektor-Emitter-Spannung					
bei 2 = -40 bis 85 °C	n ^{CEO}	-		35	v
Kollektor-Emitter-Spitzen- spennung					
bei $v_{\rm g}^{\rm g} = -40$ bis 85 °C	UCEM	-		35	v
					. 14

то	_	-		-	-	•	-	-	-
	0		ъ	в	е	ъ	251	m	м

Grenzwerte	Kurzzeichen	min.	max.	Einheit
Emitter-Kollektor-Spannung bei	UECO		5	V
Emitter-Kollektor-Spitzen- spannung	•			
bei va = -40 bis 85 °C	UECM	-	5	V
Gesamtverlustleistung4)				
bei $v_a^b = -40$ bis 25 °C	Ptot	-	200	mW
Spitzenisolations-5)				
periodische	UIORM	-	10	- kV
Isolationsgleichspannung	ulo	-	10	kV
Betriebstemperaturbereich	2ª	-40	85	°C
Lagerungstemperaturbereich	ı v _{stg}	-50	50	°c -

¹⁾ Der Durchlaßstrom I_F ist so zu wählen, daß sich der angegebene Kollektor-Emitterstrom $I_{CE(H)}$ einstellt.

⁵⁾ Kriechstrecke nach TGL 16 559 innerhalb 1 min; bei abweichender Bezugsatmosphäre Korrektur nach TGL 20 618/02

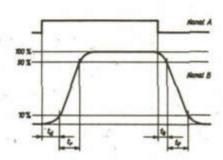


Bild 2: Definition der Schaltzeiten

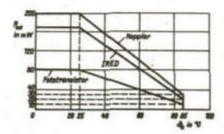


Bild 3: Abhängigkeit der max. zulässigen Verlüstleistung von der Umgebungstemperatur

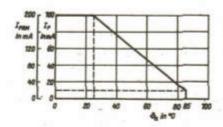


Bild 4: Abhängigkeit des max. zulässigen Durchlaßgleichstromes und des max. zulässigen periodischen Spitzendurchlaßstromes von der Umgebungstemperatur

²⁾ I_p bei $v_B^A > 25$ °C siehe Bild 4

³⁾ I_{PRM} bei $\frac{\rho_a}{a} > 25$ °C siehe Bild 4 $t_p = 50$ /us; $\frac{t_p}{T} = 1:2$; abweichende Tastverhältnisse nach Vereinbarung zwischen Hersteller und Anwender

⁴⁾ P_{tot} bei $4^{6}_{a} > 25$ °C siehe Bild 3

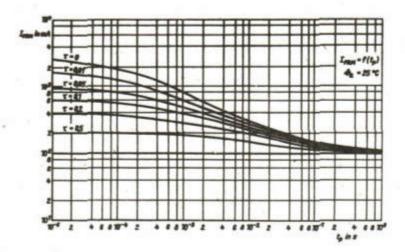


Bild 5: Impulsbelastungsdiagramm für den Spitzenstrom der Eingangsdiode und der Umgebungstemperatur $\frac{4}{5}$ = 25 °C Parameter: $\tau = \frac{t}{m}p$

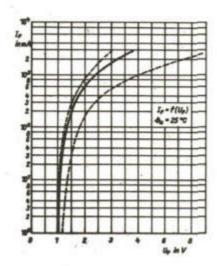


Bild 6: Mittlerer Durchlaßstrom der Eingangsdiode in Abhängigkeit von der Durchlaßspannung

Änderungen vorbehalten! Redaktionsschluß September 1986

> Die vorliegenden Detenblätter dienen ausschließlich der Information! Es können deraus keine Liefermöglichkeiten oder Produktionsverbindlichkeiten abgeleitet werden. Anderungen im Sinne des technischen Fortschritts sind vorbahalten.

Herausgeber

veb applikationszentrum elektronik berlin im veb kombinat mikroelektronik

Mainzer Straße 25, PF 211 Berlin 1035

Telefon: 5 80 05 21, Telex: 011 2981; 011 3055