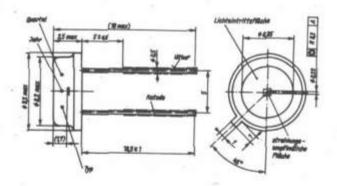


Information

SP 114

2/88 (13)


Hersteller: VEB, Werk für Fernsehelektronik Berlin

Lawinenfotodlode

Die SP 114 ist eine kleinflächige Lawinenfotodiode, gefertigt als Fotodiode in Epitaxie-Planar-Technologie. Das Gehäuse ist aus Metall-Glas.

Die Diode zelchnet sich durch eine rauscharme Signalverstärkung im HF-Bereich aus und ist für kleinund großflächige Einstrahlung durch ein Planglasfenster konzipiert.

Einsatzgebiete sind die Meß-, Steuer- und Regelungstechnik für den Nachweis hochfrequenter optischer Signale geringer Intensität.

Masse: 0,8 g

Bild 1: MaGbild SP 114

Grenzwerte

	Kurzzeichen	min.	ma	×.	Einheit		
Verlustleistung va = 25 °C	P _{trn}		100		mW		
Sperrschicht- temperatur	A ₃		12	5	°C		
Betriebstempe- raturbereich	₽ ^A 3	-15	5	5	°c		
Lagerungstempe- raturbereich über eine Zeit von einem Monat	9 stg	-25	7	0	o _C		
<u>Kenngrößen</u> (₺ = 25 °C)							
	Kurzzeichen	min.	typ.	max.	Einheit		
Dunkelsperrstrom E _e = 0 1x	I _{RO}		1	5	nA		
Multiplikation M = 100							
Multiplikations- faktor	м	100	200	-			
$\lambda_{p} = 1 \text{ nA}$ $\lambda_{p} = 850 \text{ nm}^{1}$							
Äquivalente Rausch- leistung R _I = 100 kOhm	NEP	F =	10-14	-	WHz-1/2		
M = 50 f = 1 kHz							
Impulsanstiegszeit R _L = 50 Ohm	$t_{\mathbf{r}}$	+ .	200	-	ps		
λ _p = 850 nm							
Spektrale Empfind- lichkeit	Sλ	0,3	0,4	-	A/W		
$u_{R_{p}} = 10 \text{ V}$ $\lambda_{p} = 850 \text{ nm}^{1}$							
Gesamtkapazītāt E _e = 0 lx f = 1 MHz	C _{tot}		2		pF		
U _R = 100 V							
Temperatur- koeffizient der Betriebsspannung M = 100	TK _{UB}	€ 1	+0,4	9	%/K		
I _p = 1 nA							

Fortsetzung

	Kurzzeichen	min.	typ.	max.	Einheit
Serienwiderstand f = 1 MHz	Rs	-	100	-	Ohm
$U_B = 0 V$ $E_B = 0 1x$					
Betriebsspannung M = 100	ucc	140	-	300	v
$I_p = 1 \text{ nA}$ $\lambda_p = 850 \text{ nm}^{1}$					
Verstärkungs- Bandbreite- produkt	VBP		200		GHz
96 - 030 fills					

¹⁾ Bestrahlung großflächig

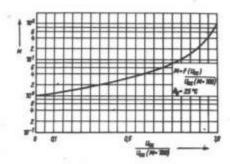


Bild 2: Abhängigkeit des Multiplikationsfaktors von der Betriebsspannung

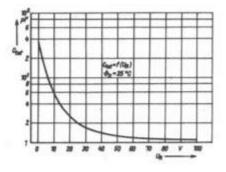


Bild 3: Mittlere Abhängigkeit der Gesamtkapazität von der Sperrspannung

Änderungen vorbehalten! Redaktionsechluß 12/67

Die vorliegenden Datenblätter dienen ausschließlich der Information! Es konnen daraus keine Liefermöglichkeiten oder Produktionsverbindlichkeiten abgeleitet werden Änderungen im Sinne des technischen Fortschritts sind vorbehalten.

Herausgeber

veb applikationazantrum elaktronik berlin im veb kombinet mikroelektronik

Mainzer Straße 25

Berlin, 1035

Telefon: 5 80 05 21, Telex: 011 2981 011 3055