

Information

SP 116, SP 117, SP 123, SP 124

1/89 (14)

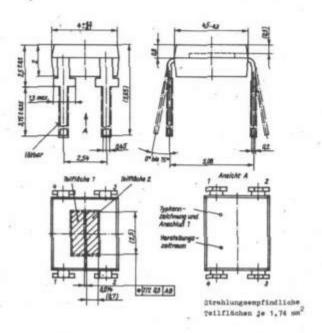
Hersteller: VEB Werk für Fernsehelektronik Berlin

Optische Positionssensoren

Die unterteilten optischen Positionssensoren SP 116, SP 117 und SP 123 sind in Si-Planartechnologie gefertigt und haben ein Trägerstreifen-Plastgehäuse. Der unterteilte optische Positionssensor SP 124 ist in Si-Epitaxie-Planartechnologie gefertigt und hat ein Metall-Glas-Gehäuse. Sie eignen sich für Dioden- und Elementbetrieb, weisen ein niedriges Dunkelstromniveau auf und sind durch ein geringes Übersprechen gekennzeichnet.

Einsatzgebiete sind die MeG-, Steuer- und Regelungstechnik, insbesondere Nachlaufsteuerungen, Kantenführungen sowie Weg- und Winkelabtastungen.

Grenzwerte


	Kurzzeichen	min. m	ax. Einheit	
Sperrgleichspannung $\mathcal{S}_{a} = -2570$ °C	U _R	2	5 V	
Verlustleistung	Ptro			×
SP 116 ·		7	5 mW	
SP 123		7	5 mW	
SP 117		4	O mW	
SP 124		10	O mW '	

	Kurzzeichen	min.	hax.	Einheit
Sperrschichttemperatur SP 124	Ŷ ₃		125	o _C
Betriebstemperatur- bereich	$\mathcal{F}_{\mathbf{a}}$	-15	55	°C
Lagerungstemperatur- bereich	θ_{stg}	-25	70	°c
Kenngrößen ($_{3}^{9}$ = 25 $_{0}^{0}$ C) .			

	Kurzzeichen	min.	typ.	max.	Einheit
	,	-			
Dunkelsperrstrom	IRO				
$E_e = 0.1x$	1000				
U _R = 20 V					
SP 116 ¹⁾			0,1	10	nA
SP 117 ¹⁾		-	0,1	10	nA
SP 123 ¹⁾		-	0,1	10	nA
SP 124		-	0,3	20	nA *
Spektrale Empfindlichkeit	5.				
λ = 633 nm	5λ				
U _R = 20 V					15 (10)
		0,25	0,33	1 3	I A/W
$\lambda_{0,5} = 10 \text{ nm}$		0127	2100		(E) (C)(E)(E)
Integrale	e 1)				
Empfindlichkeit	Stot				
U _R = 10 V					
$E_{V} = 1 \text{ k1x}^{2}$					
SP 116		4,5		-	µA/klx
SP 117		3,0	-	-	µA/klx
SP 123		1,0	-	<u> </u>	μA/klx
SP 124		8,0	50		µA/kIx
Mallanlynas das	2				
Wellenlänge der max. Empfindlich-	3				
kgit	N _B				
Δλ _{0,5} = 10 nm					
U _R = 20 V R _L < 100 Ohm		600	700	800	na
KT C 100 OUM		600	700	000	1168
Impulsanstiegs- und					
Abfallzeit 1)					
A≈ 850 nm .					
U _R = 20 V					
R _L = 50 Ohm	tr, tf		40	100	ns /
					4

	Kurzzeichen	min.	typ.	max.	Einheit
Laterale Inhomogeni- tät der Fotostromemp- findlichkeit	$\frac{\Delta 5(L)}{\Delta S(0)}$. 100	-	3	5	x
U _R = 20 V					
Normlichtert A, Licht- fleckdurchmesser 50 μm					
Übersprechen	$\frac{I_{P2}}{I_{P1}}$. 100.		2	5	x

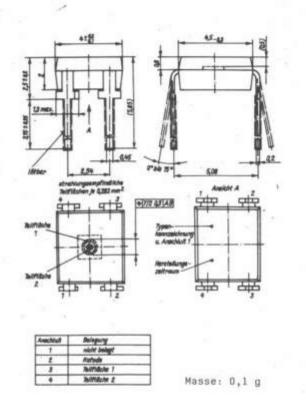
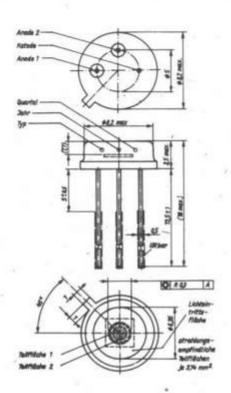
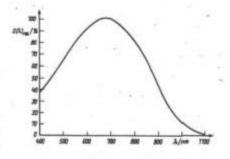
²⁾ gemessen mit Normlichtart A nach TGL 37363 in Richtung der geometrischen Achse

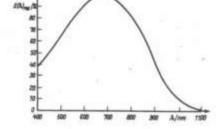
Belagung	
micht belegt	
Katode	
Tellfläche 2	
Teilfläche 1	

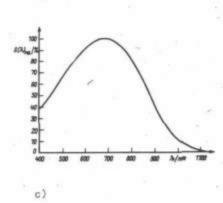
Masse: 0,1 g

Bild 1: Maßbild SP 116 - Differenzfotodjode

¹⁾ je Teilfläche bzw. Teildiode

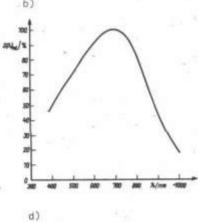
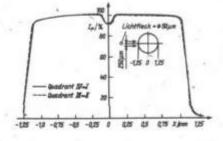

Bild 3: Maßbild SP 123 - Kreis-Kreisringfotodiode

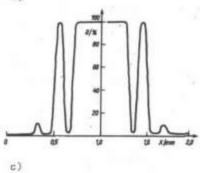


Masse: 0,8 g

Bild 4: Maßbild SP 124 - Kreis-Kreisringfotodiode

b)


Bild 5: Relative spektrale Empfindlichkeit

- a) SP 116
- b) SP 117
- c) SP 123
- d) SP 124

a)

b)

d)

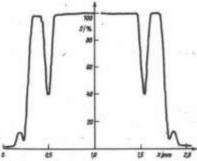


Bild 6: Homogenität der Empfindlichkeit

- a) SP 116
- b) SP 117
- c) SP 123
- d) SP 124

Die vorliegenden Datenblätter dienen ausschließlich der Information! Es können daraus keine Liefermöglichkeiten oder Produktionsverbindlichkeiten abgeleitet werden. Anderungen im Sinne des technischen Fortschritts sind vorbehalten.

Herausgeber.

veb applikationszentrum elektronik berlin im veb kombinat mikroelektronik

Mainzer Straße 25

Berlin, 1035

Telefon: 5 80 05 21, Telex: 011 2981 011 3055