mikreektronik

Information

SY 192, SY 197

1/87 (10)

Hersteller: VEB Mikroelektronik "Robert Harnau" Großräschen

Siliziumgleichrichterdioden

Die Typen SY 192 (TGL 43347) und SY 197 (TGL 43349) sind Siliziumgleichrichterdioden, die im Gehäuse H5, international das standardisierte Metallschraubgehäuse I.E.C. - A4M, angeboten werden.

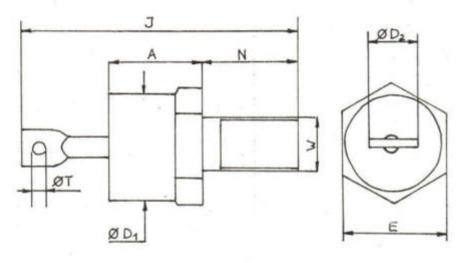


Bild 1: Gehäuse

		J	A	N	ØD ₁	ØD2	ØT	W	E
Bauform H	5	max.	max.	max.	max.	max.	min.		SW
TGL 200-83	27	40	12,5	12,7	16,9	9,5	4,1	M6	17

Masse: 17 g

Anschlußbelegung: Katode am Gewindebolzen

Grenzwerte

	Kurzzeichen	SY 192	SY 197	Einheit
Periodische Spitzensperr- spennung und Nicht- periodische Spitzensperr- spennung	u _{rrm} u _{rsm}	100, 200, 400 600, 800, 1000 1200, 1400, 1600		v
Mittlerer Durchlaßstrom (Sinushalbwellen)	I _F (AV)	41 1) 45 2)	23 ¹⁾ 25 3)	A A
max. zulässige virtuelle Sperrschichttemperatur	Jmax	175	150	°c
Betriebstemperaturbereich	A _B	-55	. +125	°c
Stoßstrom	I _{PSM}		one of the last	
$t = 10 \text{ ms.}$ $U_{R} = 0 \text{ V}$				
√ c = 25 °C		550	280	A
Øc = 150 °C	l	450	250	A

¹⁾ $\mathcal{S}_0 = 100 \, ^{\circ}\text{C}$

Kennwerte		1		1
Durchlaßspannung bei I _{PII} ** = 25 °C	v_p	1.4 1)	1,4 2)	ν
Periodischer Spitzensperrstrom	IRRM	5,0 3) 1,0 5)	6,0 4) 2,0 5)	mA mA
Innerer Wärmewiderstand Pp = 10 W	$R_{ t h exttt{jc}}$	1,0	1,0	K\A
Sperrerholzeit	trr	-	300 6)	ns

¹⁾ I_{FL} = 90 A

5)
$$U_R = U_{RRM}$$
; $C_c = 25$ °C

$$^{6)}$$
 = $^{dI}_{P}$ = 25 A/us $^{-1}$, I_{F} = 1 A; i_{rr} = 0,5 A; ϵ_{c}^{9} = 25 $^{\circ}$ C

^{2) # = 90 °}C

²⁾ I_{PM} = 20 A

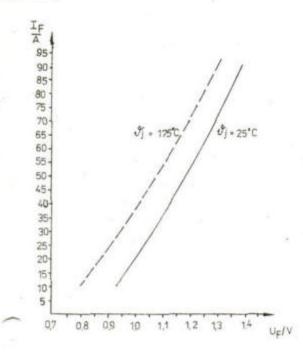


Bild 2: Obere Werte der Durchlaßkennlinie der SY 192 Parameter: Sperrschichttemperatur

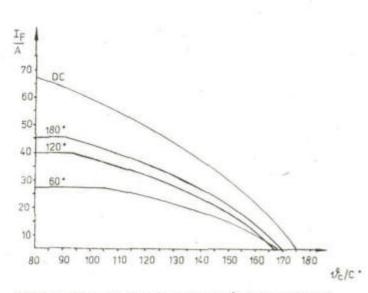


Bild 3: Höchstzulässiger Durchlaßstrommittelwert I_{F(AV)} der SY 192 in Abhängigkeit von der Gehäusetemperatur obei sinusförmigem Stromverlauf Parameter: Stromflußwinkel

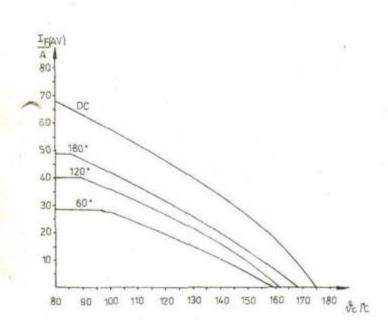


Bild 4: Höchstzulässiger Durchlaßstrommittelwert I_{F(AV)} der SY 192 in Abhängigkeit von der Gehäusetemperatur P_c bei rechteckförmigem Stromverlauf

Parameter: Stromflußwinkel

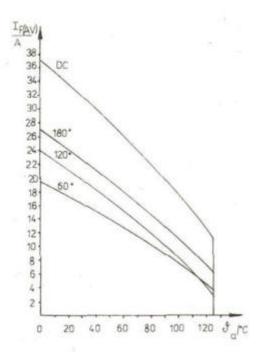


Bild 5: Höchstzulässiger Durchlaßstrommittelwert I_{P(AV)} der SY 192 in Abhängigkeit von der Umgebungstemperatur &
bei sinusförmigem Stromverlauf
Voraussetzung: Montage der Diode
SY 192 auf Kühlkörper Typ K 25, Einbaulage I

Parameter: Stromflußwinkel

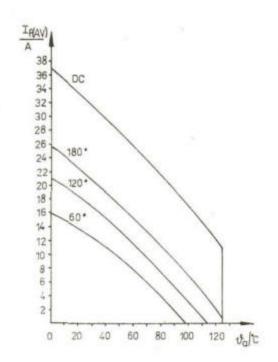


Bild 6: Höchstzulässiger Durchlaßstrommittelwert I_{F(AV)} der SY 192 in Abhängigkeit von der Umgebungstemperatur of bei rechteckförmigem Stromverlauf Voraussetzung: Montage der Diode SY 192 auf Kühlkörper Typ K 25, Einbaulage I
Parameter: Stromflußwinkel

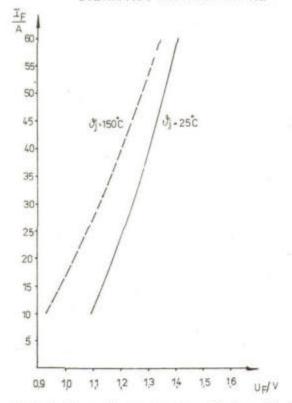


Bild 8: Obere Werte der Durchlaßkennlinie der SY 197 Parameter: Sperrschichttemperatur

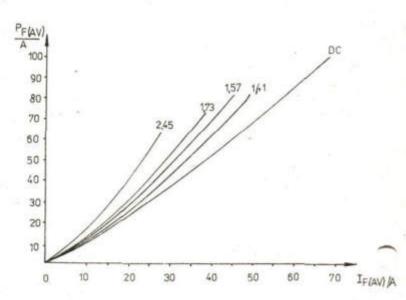


Bild 7: Durchlaßverlustleistung P_{F(AV)} der SY 192 in Abhängigkeit vom Durchlaßstrommittelwert I_{F(AV)} Parameter: Formfaktor (siehe Tabelle 1)

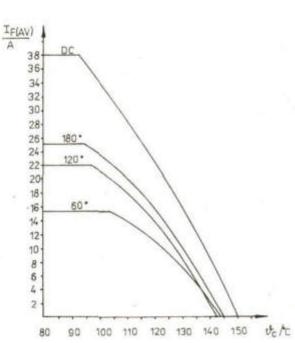
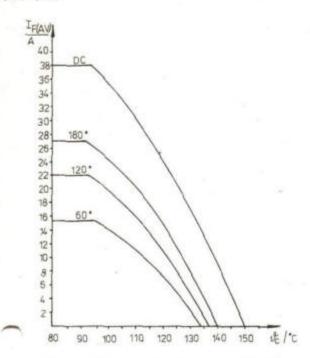
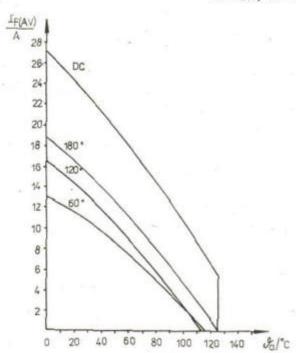




Bild 9: Höchstzulässiger Durchlaßstrommittelwert

I_{F(AV)} der SY 197 in Abhängigkeit von der
Gehäusetemperatur & bei sinusförmigem
Stromverlauf
Parameter: Stromflußwinkel

3ild 10: Höchstzulässiger Durchlaßstrommit- Bild 11: Höchstzulässiger Durchlaßstrommitteltelwert I_{P(AV)} der SY 197 in Abhängigkeit von der Gehäusetemperatur 🖋 bei rechteckförmigem Stromverlauf Parameter: Stromflußwinkel

wert I_{F(AV)} der SY 197 in Abhängigkeit von der Umgebungstemperatur & bei sinusförmigem Stromverlauf Voraussetzung: Montage der Diode SY 197 auf Kühlkörper Typ K 25, Einbaulage I Parameter: Stromflußwinkel

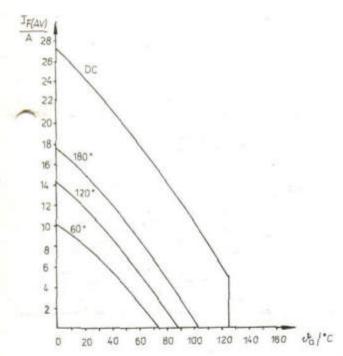


Bild 12: Höchstzulässiger Durchlaßstrommittelwert I_{F(AV)} der SY 197 in Abhängigkeit von der Umgebungstemperatur & bei rechteckförmigem Stromverlauf Voraussetzung: Montage der Diode SY 197 auf Kühlkörper Typ K 25, Einbaulage I Parameter: Stromflußwinkel

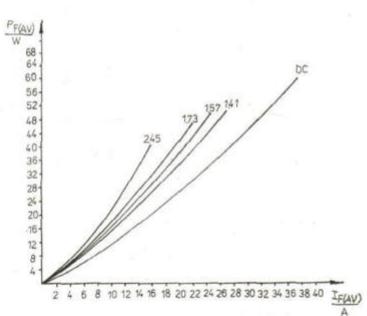


Bild 13: Durchlaßverlustleistung $P_{F(AV)}$ der SY 197 in Abhängigkeit vom Durchlasstrommittelwert IF(AV) Parameter: Formfaktor (siehe Tabelle 1)

Tabelle 1: Bestimmung des Formfaktors aus der Schaltungsart und dem Stromverlauf

$$F = Formfaktor = \frac{I_{FRMS}}{I_{FAV}} = \frac{effektiver Durchlaßstrom}{mittlerer Durchlaßstrom}$$

Stromart	Stromflußwinkel	Schaltungsart	Formfaktor
Sinus (beidseitig angeschnitten	f = 180 ° f = 120 ° f = 60 °	E; M; B DB; S; DSS DS	1,57 1,73 2,45
rechteck (beidseitig angeschnitten))	E; M; B DB; S; DSS DS	1,41 1,73 2,45
Gleichstrom DC	≠= 360 °		

Legende:

E = Einwegschaltung

M = Mittelpunktschaltung

B = Brückenschaltung

DB = Drehstrombrückenschaltung

S = Sternschaltung

DS = Doppelsternschaltung

DSS = Doppelsternschaltung mit Saugdrossel

Montagehinweise

Beim Einbau der Bauelemente ist auf eine möglichst geringe mechanische und thermische Belastung der Anschlüsse zu achten.

Bei der Montage auf Kühlkörpern ist eine Wärmeleitpaste anzuwenden, die hauchdunn zwischen den Kontaktflächen aufzutragen ist. Bei der Befestigung sind die maximal zulässigen Montagedrehmomente nicht zu überschreiten, da es ansonsten zu einer Bauelementeschädigung kommt.

Maximal zulässiges Anzugsdrehmoment Gehäusebauform H5 = 2.5 Nm.

Die vorliegenden Datenblätter dienen ausschließlich der Informetion! Es können daraus keine Liefermöglichkeiten oder Produktionsverbindlichkeiten abgeleitet werden. Anderungen im Sinne des technischen Fortschritts sind vorbehalten.

Herausgeber:

veb applikationszentrum elektronik berlin im veb kombinet mikroelektronik

Mainzer Straße 25 Borlin 1035

Telefon: 5 80 05 21, Telex: 011 2981; 011 3055