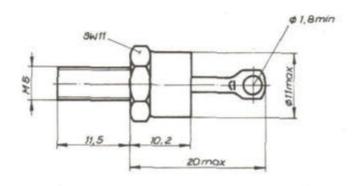
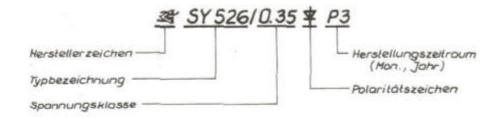


Information



SY 526


Schottky-Leistungsgleichrichterdiode im Metallgehäuse (Schottky-Barrier-Diode)

Technische Daten

1. Abmessungen:

Bauform H4 nach TGL 200 - 8327

Masse etwa 8 g

2. Grenzkennwerte:

Тур	U _{RRM} in V	U _{RWM} ir	1 V
SY 526/0,3	30	30	
SY 526/0,35	35	35	
SY 526/0,4	40	40	
SY 526/0,45	45	45	
Effektiver Durchlaßstrom		I _{F(RMS)}	39 A
Mittlerer Durchlaßstrom ¹)		IF(AV)	25 A
Stoßstrom ²)		I _{FSM}	500 A
Stroßstrom³)		I _{FSM}	400 A
Stoßstromintegral ³)		$\int i^2 dt$	800 A ² s
Sperrschichttemperaturbereich		ϑ_j	−55+150 °C
Lagertemperaturbereich		ϑ_{stg}	-55+ 55 °C
Betriebstemperaturbereich		ð _a	−55+125 °C

3. Kenngrößen:

Durchlaßspannung ⁴)	U_{FM}	0,55	V
periodischer Spitzensperrstrom ⁵)	IRRM	3	mA
periodischer Spitzensperrstrom ⁶)	I _{RRM}	200	mA
Spannungsanstiegsgeschwindigkeit	dU_R/dt	1000	V/µs
Gesamtkapazität (typ)7)	C_{tot}	3	nF
Innerer Wärmewiderstand	R _{thjc}	≤ 1,6	K/W
Schleusenspannung	U _(TO)	≤ 0,3	V
Ersatzwiderstand ⁸)	rf	≤ 7,5	$m\Omega$
Höhe über NN	h	≤ 1000	m
Montagewärmewiderstand	R _{thm}	0,3	K/W
Temperaturkoeffizient der Flußspannung ⁹)	TKUF	≤ 1,0	mV/K

⁴)
$$I_{FM}=25\,A$$
; $\vartheta_c=25\,^{\circ}C-5\,K$

⁵)
$$U_R = U_{RRM}$$
; $\vartheta_c = 25 \, ^{\circ}C - 5 \, K$

¹) $\vartheta_j = 150 \,^{\circ}\text{C}$; sinusförmiger Stromverlauf

 $^{^2)~\}vartheta_c = 25\,^\circ C - 5$ K; $t_p = 10$ ms; 50 Hz-Sinushalbwelle; $U_R = 0$ V

 $^{^3}$) $\vartheta_c = 70\,^{\circ}\text{C} - 5\,\text{K}$; $t_p = 10\,\text{ms}$; 50 Hz-Sinushalbwelle; $U_R = 0\,\text{V}$

⁶) $U_R = U_{RRM}$; $\vartheta_c = 100 \, ^{\circ}C - 5 \, K$

 $^{^{7}}$) $U_{R} = 5 \text{ V}; f = 100 \text{ kHz}$

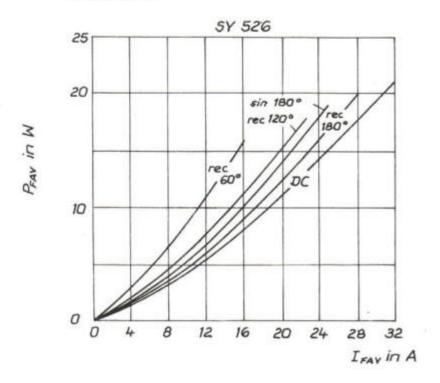
⁸⁾ $I_F = 10 ... 60 A$; $\vartheta_c = 100 \, ^{\circ}C$

⁹⁾ $I_F = 10 ... 60 A$

4. Kennlinien

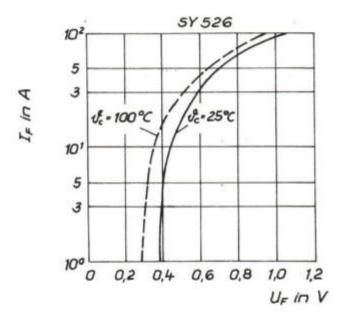
Für die Bestimmung der Belastbarkeit einer Diode in einer Schaltung bei ungesteuertem Betrieb können folgende idealisierte Stromformen zugrunde gelegt werden:

Schaltung	Ohmsche Last	Induktive Last	
E	sin 180°		
M/B	sin 180°	rec 180°	
S/DB	rec 120°	rec 120°	
DS	rec 60°	rec 60°	
DSS	rec 120°	rec 120°	

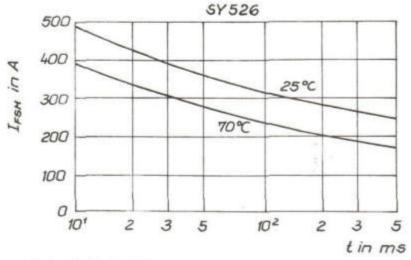

5. Bestellbezeichnung:

Schottky-Leistungsgleichrichterdiode vom Typ SY 526/0,3 mit einem Grenzwert der periodischen Spitzensperrspannung von 30 V

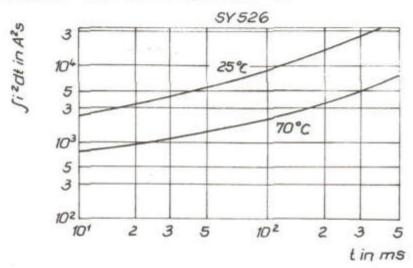
Änderungen vorbehalten!


Durchlaßverlustkennlinien

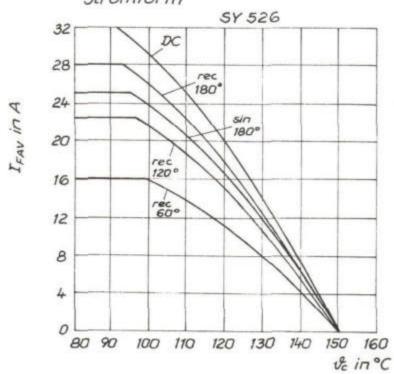
Parameter: Stromflußwinkel 4 Stromform

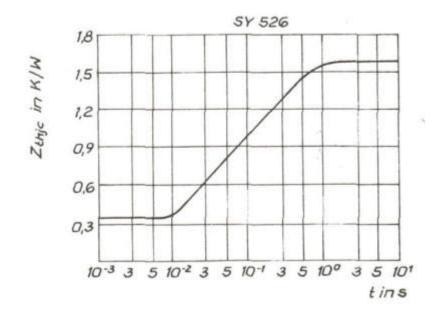

Durchlaßkennlinen

Parameter: Gehäusetemperatur &

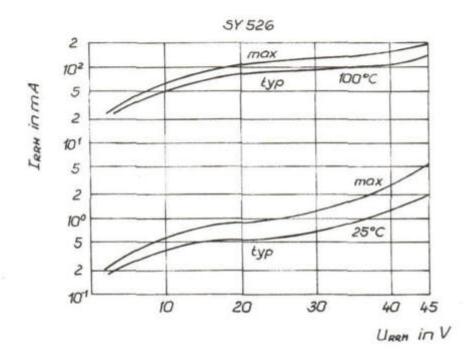

Grenzstromkennlinie

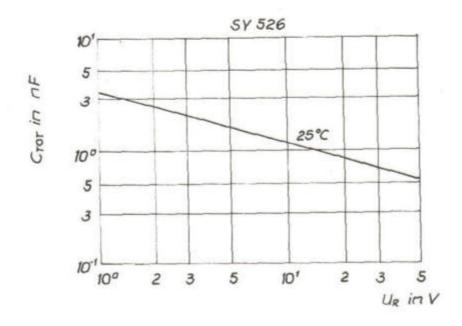
Parameter: Gehäusetemperatur &


Grenzstromintegral


Parameter: Gehäusetemperatur 🖑

Zulässige Gehäusetemperatur


Parameter: Stromflußwinkel 4 Stromform


Sperrkennlinien

Parameter: Gehäusetemperatur &

Gesamtkopazitát

Parameter: Gehäusetemperatur 📞

Inf.-Nr. 79/87

Ag 05/024/87

veb mikroelektronik robert harnau großräschen im veb kombinat mikroelektronik

DDR-7805 Großräschen, Karl-Liebknecht-Straße 1 Telefon: 70, Telex: 017 8849

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie