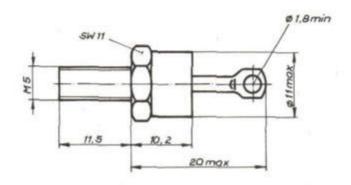
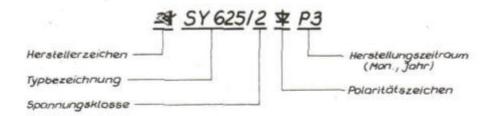


Information



SY 625


Epitaxial-Leistungsgleichrichterdiode im Metallgehäuse (Fast Recovery Epitaxial Diode)

Technische Daten

1. Abmessungen:

Bouform H4 noch TGL 200 - 8327

Masse etwa 8 g

2. Grenzkennwerte:

Тур	U _{RRM} in V	U _{RWM} in	V
SY 625/0,5	50	50	
SY 625/1	100	100	
SY 625/1,5	150	150	
SY 625/2	200	200	
Effektiver Durchlaßstrom		I _{F(RMS)}	43 A
Mittlerer Durchlaßstrom ¹)		I _{F(AV)}	28 A
Stoßstrom ²)		IFSM	420 A
Stoßstrom ³)		I _{FSM}	300 A
Stoßstromintegral ³)		∫i²dt	450 A ² s
Sperrschichttemperaturbereich		ϑ_j	−55+150 °C
Lagertemperatur		$\vartheta_{\rm stg}$	-55+ 55 °C
Betriebstemperaturbereich		ϑ_a	−55+125 °C

3. Kenngrößen:

Durchlaßspannung ⁴)	U_{FM}	0,95	V
periodischer Spitzensperrstrom ⁵)	I _{RRM}	0,2	mA
Sperrerholungszeit ⁶)	t _{rr}	≤ 50	ns
periodischer Spitzensperrstrom ⁷)	I _{RRM}	3	mA
Durchlaßspannung ⁸)	U_{FM}	0,85	Α
Innerer Wärmewiderstand	R_{thjc}	≤ 1	K/W
Ersatzwiderstand ⁹)	r_{f}	≤ 5	$m\Omega$
Schleusenspannung	U _(TO)	≤ 0,65	V
Höhe über NN	h	≤ 1000 -	m
Montagewärmewiderstand	R_{thm}	0,3	K/W
Temperaturkoeffizient der Flußspannung ¹⁰)	TKUF	= 1,5	mV/K

¹) $\vartheta_i = 125$ °C; sinusförmiger Stromverlauf

$$^3)~\vartheta_c=100~^{\circ}\text{C}-5~\text{K};~t_p=10~\text{ms};~50~\text{Hz-Sinushalbwelle};~U_R=0~\text{V}$$

4)
$$I_{FM} = 20 \text{ A}$$
; $\vartheta_c = 25 \,^{\circ}\text{C} - 5 \text{ K}$

⁵)
$$U_R = U_{RRM}$$
; $\vartheta_c = 25 \, ^{\circ}\text{C} - 5 \, \text{K}$

$$^6)~I_F=1~A;~U_R=30~V;~-dI_F/dt=50~A/\mu s;~\vartheta_c=25~^\circ C~-5~K$$

7
) $U_{R}=U_{RRM};\,\vartheta_{c}=100\,^{\circ}C-5\,K$

8
) $I_{FM}=20\,A;\,\vartheta_{c}=100\,^{\circ}C-5\,K$

$$^{9})~I_{F}=10\ldots60~A;\,\vartheta_{c}=120~^{\circ}C$$

²) $\vartheta_c = 25 \,^{\circ}\text{C} - 5 \,\text{K}$; $t_p = 10 \,\text{ms}$; 50 Hz-Sinushalbwelle; $U_R = 0 \,\text{V}$

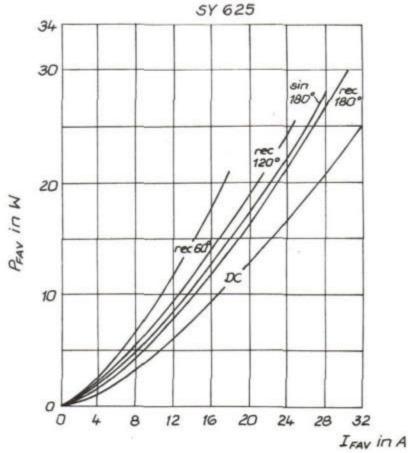
¹⁰) $I_F = 10 ... 60 A$

4. Kennlinien:

Für die Bestimmung der Belastbarkeit einer Diode in einer Schaltung bei ungesteuertem Betrieb können folgende idealisierte Stromformen zugrunde gelegt werden:

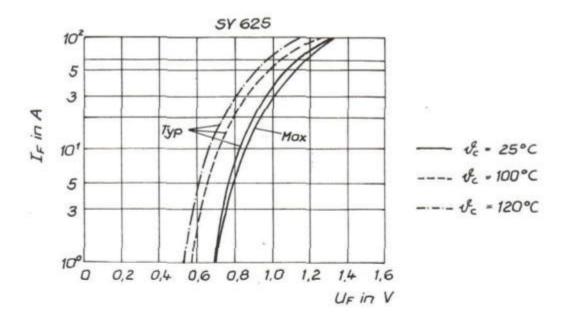
Schaltung	Ohmsche Last	Induktive Last
E	sin 180°	
M/B	sin 180°	rec 180°
S/DB	rec 120°	rec 120°
DS	rec 60°	rec 60°
DSS	rec 120°	rec 120°

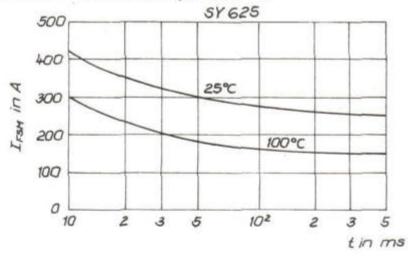
5. Bestellbezeichnung:


Epitaxial-Leistungsgleichrichterdiode vom Typ SY 625/1,5 mit einem Grenzwert der periodischen Spitzensperrspannung von 150 V.

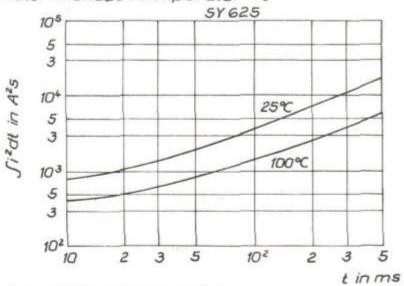
Änderung vorbehalten!

Durchlaßverlu**s**tkennlinien

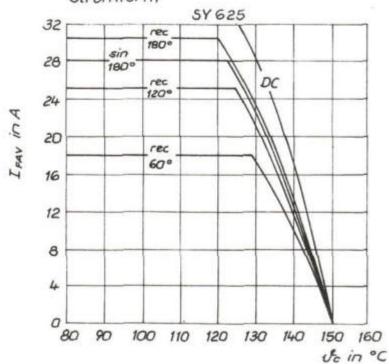

Parameter: Stromflußwinkel 4 Stromform


Durchlaßkennlinien

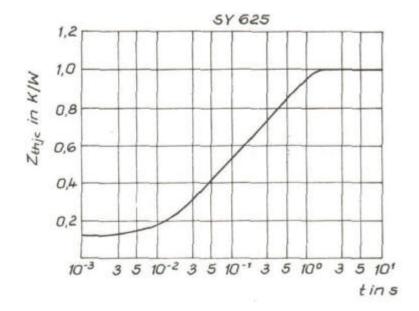
Parameter: Gehäusetemperatur &


Grenzstromkennlinie

Parameter: Gehäusetemperatur Vc

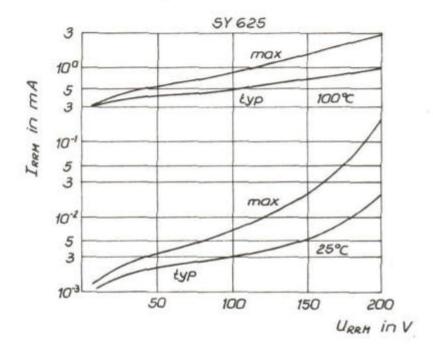

Grenzstromintegral

Parameter: Gehäusetemperatur &



Zulässige Gehäusetemperatur

Parameter: Stromflußwinkel & Stromform



Transienter Wärmewiderstand

Sperrkennlinien

Parameter: Gehäusetemperatur 🕏

Inf.-Nr. 80/87

Ag 05/024/87

veb mikroelektronik robert harnau großräschen im veb kombinat mikroelektronik

DDR-7805 Großräschen, Karl-Liebknecht-Straße 1 Telefon: . Telex: 017 8849 70

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR – 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie