

Information

1k statisches RAM U 215 D U 215 D 1 U 225 D U 225 D 1

Die Schaltkreise U 215 D/D 1 und U 225 D/D 1 sind hochintegrierte, statische Schreib-Lese-Speicher (sRAM) mit wahlfreiem Zugriff. Die Speicher sind in der Form 1024 x 1 bit organisiert. Diese Schaltkreise werden in n-Kanal-Silicon-Gate/ED-Technologie gefertigt. Der U 215 D und der U 215 D 1 besitzen einen Open-drain-Ausgang. Dagegen verfügen der U 225 D und der U 225 D 1 über einen Tri-state-Ausgang. Die Schaltkreise U 215 D und U 225 D unterscheiden sich vom U 215 D 1 und U 225 D 1 lediglich in der Zugriffszeit.

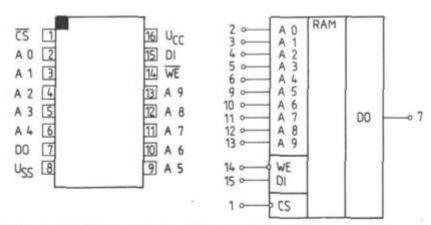


Bild 1: Amschlußbelegung und Schaltungskurzzeichen

Bezeichnung der Anschlüsse:

A O A 9	Adresseneingänge
DO	Datenausgang
DI	Dateneingang
WE	Schreibsginal
CS	Chip-select-Eingang
Ucc	Betriebsspannung
USS	Bezugspotential

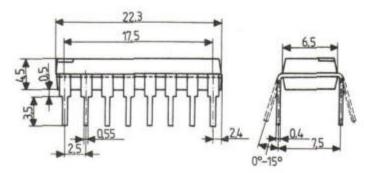


Bild 2: Gehäuseabmessungen

Beachreibung

Die Schaltkreise U 215 D/D 1 und U 225 D/D 1 besitzen eine Speichermatrix von 32 Zeilen und 32 Spalten (1024 bit). Zur Adressierung über 10 Adressenleitungen stehen 32 Zeilen- und 32 Spaltendekoder zur Verfügung.

Die Schaltkreise besitzen einen Chip-select-Eingang ($\overline{\text{CS}}$). Liegt an diesem L-Pegel an, ist der Schaltkreis aktiviert. Wird $\overline{\text{CS}}$ auf H-Pegel gelegt, sind nach einer Verzögerungszeit die Tri-state-Ausgänge der U 225 D/D 1 hochohmig. Bei den Schaltkreisen U 215 D/D 1 liegt nach der $\overline{\text{CS}}$ -Abklingzeit der Ausgang DO auf H-Pegel.

Die Schaltkreise U 215 D/D 1 und U 225 D/D 1 können in den zwei Betriebsarten "Lesen" und "Schreiben" arbeiten. In der Betriebsart "Lesen" ($\overline{\text{CS}} = \text{U}_{\text{IL}}$; $\overline{\text{WE}} = \text{U}_{\text{IH}}$ steht die Information am Datenausgang DO nicht negiert bereit. In der Betriebsart "Schreiben" ($\overline{\text{CS}} = \text{U}_{\text{IL}}$) werden die am Dateneingang DI anliegenden Informationen in die an A O ... A 9 adressierten Speicherzellen übernommen. Ein gleichzeitiges Lesen ist nicht möglich.

Alle Ein- und Ausgänge der Schaltkreise U 215 D/D 1 und U 225 D/D 1 sind TTL-kompatibel. Mit einem U 215 D/D 1 lassen sich 7 TTL- bzw. 33 Low-power-Schottky-TTL-Lasten treiben, mit einem U 225 D/D 1 dagegen nur 4 TTL- bzw. 19 Low-power-Schottky-TTL-Lasten.

Die Schaltkreise U 215 D/D 1 und U 225 D/D 1 besitzen einen chipinternen Substratvorspannungsgenerator. Durch die damit verbundene Verringerung der Sperrschichtkapazität wird eine höhere Geschwindigkeit erreicht. Gleichzeitig wird durch die negative Substratvorspannung eine negative Eingangsspannung (-0,5 V) zulässig.

Hauptsächlich werden diese Schaltkreise in Arbeitspsicheranordnungen für Mikroprozessorsysteme eingesetzt.

Betriebsart	Eingänge			Ausgänge		
	CS	ME	DI	U 215 D/D 1	U 225 D/D 1	
nicht ausgewählt	Н	beli	Lebig	н	HIGH Z	
Schreiben L	L	L	L	H	HIGH Z	
Schreiben H	L	L	H	H	HIGH Z	
Lesen	L	H	beliebig	DO	DO	

Grenzwerte

Kennwert	Kurzzeichen	min.	max.	Einheit
Betriebsspannung	ucc	-0,5	7	٧
Eingangsspannung an allen Eingängen	uI	-0,5	7	v
Ausgangsspannung	u _o	-0,5	7	v
Ausgangkurzschlußstrom	ID		20	mA.
Verlustleistung	Pw		1	w
Betriebstemperatur	Nap	0	70	°c
Lagerungstemperatur	vap stg	-55	125	°c

Statische Betriebsbedingungen (bezogen auf $U_{SS} = 0 V$)

Kennwert	Kurzzeichen	min.	typ.	max.	Einheit
Betriebsspannung	Uoc	4,75	5	5,25	v
Eingangsspannung Low	nII	-0,5		0,8	v
Eingangsspannung High	UIH	2		UCC	V
Umgebungstemperatur	Ja	0	25	70	°c

Dynamische Betriebsbedingungen

(bezogen auf USS = 0 V)

Kennwert	Kurzzeichen	min.	me.x.	Einheit
U 215 D/D 1			1,	
CS-Vorhaltezeit	tACS	5	45	ns
CS-Abklingzeit	tRCS	1	40	ns
Gültigkeitsdauer der DO-I formation nach Adressenän	n- tOH	10		ns
WE-Vorhaltezeit	tws		40	ns
WE-Abklingzeit	twR	5	45	ns
U 225 D/D 1				
CS-Vorhaltezeit	tACS	5	45	ns
Verzögerung zwischen CS und HIGH Z	tzrcs		40	ns
Gültigkeitsdauer der DO-I formation nach Adressenän	n- toH	10		ns
Verzögerung zwischen WE und HIGH Z	^t ZRWS		40	ns
WE-Abklingzeit	t _{WR}	5	45	ns
U 215 D/D 1 und U 225 D/D	1		1)
Schreibimpulsbreite	tw	50		ns
Datenaufbauzeit	twsp	5		ns
Datenhaltezeit	twHD	5		ns
Adressenaufbauzeit	tWSA	30		ns
Adressenhaltezeit	t _{WHA}	5	1	ns
CS-Aufbauzeit	twscs	5		ns
CS-Haltezeit	twics	5		ns

Statische Kennwerte (bezogen auf $U_{SS} = 0 V$)

Kennwert	Kurzzeichen	Meßbedingung	min.	mex.	Einheit
I-Eingangsstrom	-I _{IL}	U _{CC} = 5,25 V U _{IL} = 0,4 V		50	/uA
H-Eingangsstrom	-I _{IH}	U _{CC} = 5,25 V U _{IH} = 4,5 V		50	/UA
L-Ausgangsspannung U 215 D/D 1	nor	$U_{CC} = 4.75 \text{ V}$ $I_{OL} = 12 \text{ mA}$		0,8	ν.
L-Ausgangsspannung U 225 D/D 1	nor	$U_{CC} = 4.75 \text{ V}$ $I_{OL} = 7 \text{ mA}$		0,8	V
Ausgangssperrstrom U 215 D/D 1	I ₀₁	U _{CC} = 5,25 V U _O = 4,5 V		110	/UA
Ausgangssperrstrom U 225 D/D 1	102	$U_{CC} = 5,25 \text{ V}$ $U_{0} = 0,52,4 \text{ V}$		70	MA
H-Ausgangsspannung	n ^{OH}	$U_{CC} = 4,75 \text{ V}$ $I_{OH} = 3,2 \text{ mA}$	2,4		v
Eingangskapazität	cI	U _I = 0 V		5	pF
Ausgangskapazität	o _o	U _I = 0 V U _{CS} = 5 V		8	pF
Stromaufnahme	Icc			100	mA.

Dynamische Kennwerte (bezogen auf USS = 0 V)

Kennwert	Kurzzeichen	Meßbedingung	min.	mex.	Einheit
Zugriffszeit U 215 D/U 225 D	^t AA	U _{CC} = 4.75 V		95	ns
Zugriffszeit U 215 D 1/U 225 D 1	^t AA	U _{CC} = 4.75 V		140	ns

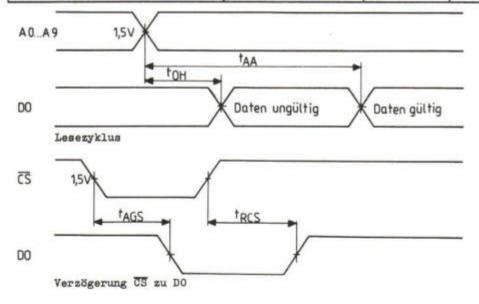


Bild 3: Impulsdiagramm Lesezyklus U 215 D/D 1

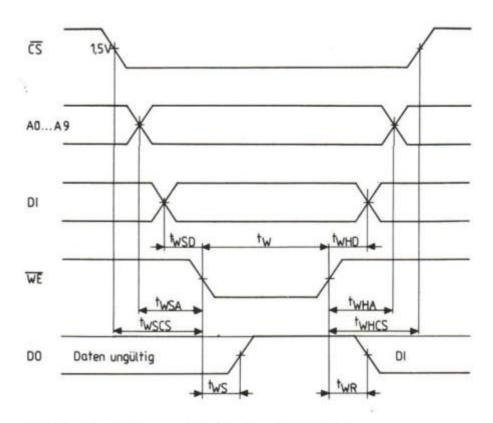


Bild 4: Impulsdiagramm Schreibzyklus U 215 D/D 1

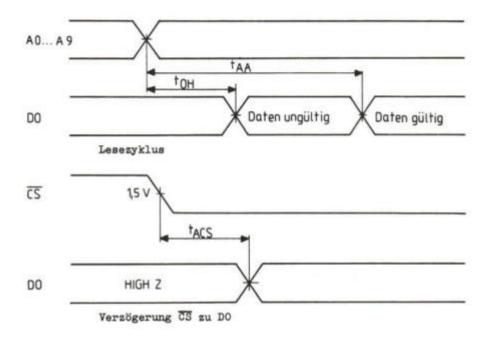


Bild 5: Impulsdiagramm Lesezyklus U 225 D/D 1

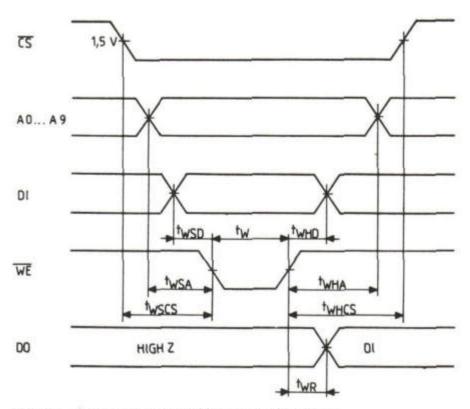


Bild 6: Impulsdiagramm Schreibzyklus U 225 D/D 1

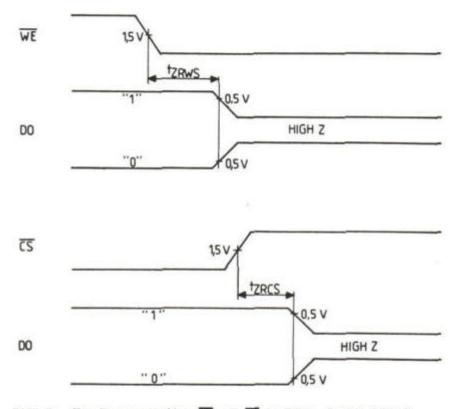


Bild 7: Verzögerungezeiten WE und CS zu HIGH (U 225 D/D 1)

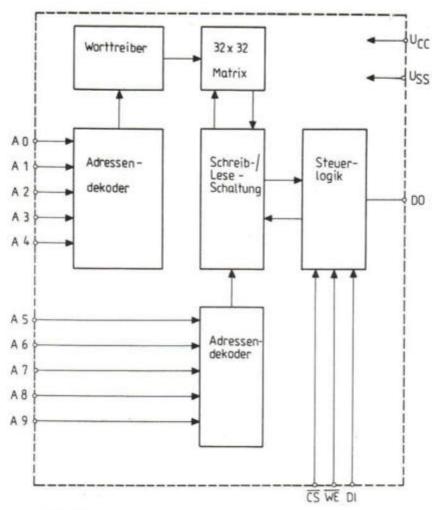


Bild 8: Blockschaltbild

Internationale pinkompatible Äquivalenztypen

Typ	Äquivalenz ;y p		Hersteller	
U 215 D	SN 74 LS 314 J	1)	Texas Instruments	
	SN 74 LS 314 N	1)	Texas Instruments	
	2115 F	1)	
	2115 LI	- 1	Mullard	
	2115 I		Philips	
	2115 LF		Signetics	
	2115 LN	- 1	Valvo	
	2115 N)	
U 215 D 1	SN 54 LS 314 J	1)	Texas Instruments	
U 225 D	SN 74 LS 214 J	1)	Texas Instruments	
	SN 74 LS 214 N	1)	Texas Instruments	
	2125 F)	
	2125 I		Mullard	
	2125 LF	3.	Philips	
	2125 LI	- 1	Signetics	
	2125 LN		Valvo	
	2125 N)	
U 225 D 1	SN 54 LS 214 J	1)	Texas Instruments	

¹⁾ in TTL-Technik gefertigt

Alle Äquivalenztypen haben eine geringere Verlustleistung.

Dieses Datenblatt gibt keine Auskunft über Liefermöglichkeiten und enthält keine Verbindlichkeiten zur Produktion. Die gültige Vertragsunterlage beim Bezug der Bauelemente ist der Typstandard. Rechtsverbindlich ist jeweils die Auftragsbestätigung. Änderungen im Zuge der technischen Weiterentwicklung vorbehalten. Die Behandlungsvorschriften für MOS-Bauelemente sind unbedingt einzuhalten, da andernfalls eine Reklamation nicht anerkannt werden kann.

12/85

veb mikroelektronik karl marx erfurt stammbetrieb

DDR-5023 Erfurt, Rudolfstraße 47 Telefon 5 80, Telex 061 306

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Telex: BLN 114721 elei, Telefon: 2180