mikreektronik

Information

64 k x 1 dynamischer RAM U 2164 D

Vorläufiges Datenblatt!

Der integrierte Schaltkreis U 2164 D ist ein dynamischer RAM in n-Kanal-Silicon-Gate-Technologie mit wahlfreiem Zugriff und einer Speicherkapazität von 65 536 bit in einer Organisation von $64 \text{ k} \times 1$.

Durch das Multiplexen der Adreßsignale ist der Einsatz des platzsparenden lépoligen Dual-in-line-Gehäuses möglich. Der Schaltkreis ist für den Aufbau von RAM-Blöcken verschiedener EDVA-Systeme, Mikrorechner und Automatisierungseinrichtungen bestimmt.

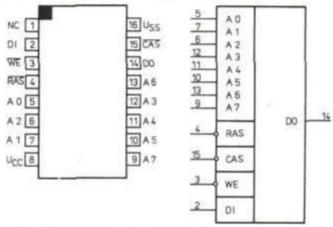


Bild 1: Anschlußbelegung und Schaltungskurzzeichen Bezeichnung der Anschlüsse:

DUZ	erennand	ner wildrutness:			
1	NC	nicht angeschlossen	9	A 7	Adresseneingang
2	DI	Dateneingang	10	A 5	Adresseneingang
3	WE	Schreibsignal	11	A 4	Adresseneingang
4	RAS	Eingang des Signals der Zeilenauswahl	12	A 3	Adresseneingang
5	A D		13	A 6	Adresseneingang
- 33	200	Adresseneingang	14	DO	Datenausgang
6	A 2	Adresseneingang	15	CAS	Eingang des Signals
7	A 1	Adresseneingang	1.53	STATE OF	zur Spaltenauswahl
8	ucc	Betriebsspannung +5 V	16	U _{SS}	Bezugspotential

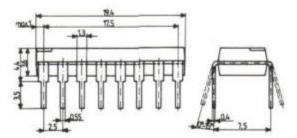


Bild 2: Gehäuseabmessungen

Kurzbeschreibung

- dynamischer RAM in der Organisation von 65 536 x 1 bit

- RAS-Zugriffszeit/Zykluszeit:

200 ns/330 ns (U 2164 D 20)

250 ns/460 ns (U 2164 D 25)

- Betriebsspannung:

- geringe Stromaufnahme:

+5 V + 10 %

55 mA (Betriebsstrom)

5 mA (Ruhestrom)

- getrennter Datenein- und -ausgang

- tristate-Ausgangsstufen, Datenausgang durch CAS-Signal steuerbar

- Eingangsspannung darf kurzzeitig $U_{
m IL}$ = -2 V betragen

- Ein- und Ausgänge TTL-kompatibel

- Betriebsarten: READ

WRITE

READ-MODIFY-WRITE

PAGE-MODE

RAS-ONLY-REFRESH

Bild 3: Blockschaltbild

Funktionsweise

Adressierung

Die 16 Adressen, die zur Auswahl einer der 65 536 Speicherzellen erforderlich sind, werden zeitmultiplex über die 8 Adresseneingänge A D ... A 7 in die internen Adressenspeicher übernommen. Das wird durch die zeitliche Folge zweier abfallender Flanken von Taktimpulsen mit TTL-Pegeln erreicht.

Der erste Taktimpuls, Row-Adress-Strobe (RAS), übernimmt die Reihenadressen in den Chip. Der zweite Taktimpuls, Column-Adress-Strobe (CAS), übernimmt danach die 8 Spaltenadressen in den Chip. Jedes dieser Signale RAS und CAS löst eine Folge von intern erzeugten Taktimpulsen aus.

Die beiden Taktketten sind logisch in der Weise gegeneinander verriegelt, daß die zeitmultiplexe Adressenübernahme außerhalb des kritischen Zeitweges für den Datenzugriff beim Lesen liegt. Die späteren Ereignisse in der CAS-gesteuerten Taktkette sind gesperrt, bis ein Signal (GATEO CAS) entsteht, das von der RAS-Taktkette abgeleitet ist. Dieses GATEO CAS erlaubt, daß der CAS-Takt extern dann schon aktiviert werden darf, wenn die Zeilenadressenhaltezeit (T_{RLZX}) vergangen ist und die Adresseninformation von Zeile zu Spalte gewechselt hat.

Datenein- und -ausgang

Die Baten, die in eine ausgewählte Zelle eingeschrieben werden sollen, werden bei einer Kombination der WE- und CAS-Signale in ein Dateneingangsregister übernommen, wenn RAS aktiv ist. Das letzte der beiden Signale (WE, CAS) veranlaßt mit seiner abfallenden Flanke die Übernahme der Dateninformation (DI) in das Dateneingangsregister; dadurch gibt es verschiedene Möglichkeiten der Schreibzyklussteuerung.

Bei einem Schreibzyklus, bei dem $\overline{\text{WE}}$ vor $\overline{\text{CAS}}$ aktiv (Low) wird, wird DI durch $\overline{\text{CAS}}$ übernommen. Die Dateneingangsvorhaltezeit (T $_{\text{IVCL}}$) und -haltezeit (T $_{\text{CLIX}}$) sind dann auf $\overline{\text{CAS}}$ zu beziehen.

Wenn die Eingangsdaten beim CAS-Übergang noch nicht verfügbar sind oder wenn ein READ-WRITE-Zyklus gewünscht wird, muß das WE-Signal verzögert werden bis der CAS-Übergang erfolgte.

In diesem DELAYED-WRITE-Zyklus sind die o. g. Zeiten (T_{IVWL} bzw. T_{WLIX}) auf WE zu beziehen (sh. Bild 4 und 7).

Datenausgangssteuerung

Der normale Zustand des Datenausganges (DO) ist der hochohmige Zustand. Immer wenn $\overline{\text{CAS}}$ inaktiv (High) ist, ist DO im hochohmigen Zustand. Der einzige Zeitpunkt, in dem der Ausgang eingeschaltet ist und die logische O oder 1 enthält, ist nach der Zugriffszeit bei einem Lesezyklus. DO ist dann gültig, bis $\overline{\text{CAS}}$ zurück in den inaktiven (High-) Zustand geht.

Wenn der Speicherzyklus ein READ-, READ-MODIFY-WRITE- oder ein DELAYED-WRITE-Zyklus ist, dann geht DO vom hochohmigen in den aktiven Zustand über. Nach der Zugriffszeit steht der Inhalt der ausgewählten Zelle (nicht invertiert zum ehemaligen DI-Signal) zur Verfügung. Der Ausgang bleibt aktiv, bis CAS inaktiv (High) wird, unabhängig davon, ob RAS inaktiv wird oder nicht.

Wenn der Speicherzyklus ein WRITE-Zyklus ist (WE aktiv, bevor CAS aktiv wird), dann behält der Datenausgang DO seinen hochohmigen Zustand während des gesamten Zyklusses. Diese Konfiguration erlaubt dem Anwender volle Steuermöglichkeit von DO allein durch die Zeitsteuerung von WE. Dadurch, daß der Ausgang die Daten speichert, bleiben die Daten von der Zugriffszeit an bis zum Beginn eines folgenden Zyklusses ohne Nachteil für die Zugriffszeit (Ausdehnung) gültig.

PAGE-MODE

Die PAGE-MODE-Zyklen erlauben bei aufeinanderfolgende Speicheroperationen für verschiedene Spaltenadressen bei der gleichen Zeilenadresse erhöhte Geschwindigkeit ohne Anwachsen der Verlustleistung. Das wird durch eine eingespeicherte Zeilenadresse und RAS = aktiv (Low) während aller folgenden Speicherzyklen, die sich auf die gleiche Zeilenadresse beziehen, erreicht. Dieser PAGE-MODE-Zyklus spart die Verlustleistung ein, die mit dem RAS-Übergang verbunden ist. Die Zeit für die Übernahme weiterer Zeilenadressen wird dann eingespart. Deshalb sind Zugriffs- und Zykluszeit um diesen Betrag kleiner.

Auffrischen

Das Auffrischen der Daten in der Speichermatrix mit dynamischen Zellen wird ausgeführt, indem ein Speicherzyklus für jede der 128 (A O ... A 6) Zeilenadressen in dem Zeitintervall von 2 ms ausgeführt wird.

Neben den normalen Speicherzyklen ist dies auch mittels RAS-ONLY-REFRESH-Zyklen vorteilhaft möglich. Damit ergibt sich eine erheblich niedrigere Verlustleistung.

Einschalten der Betriebsspannungen

Solange eine beliebige Eingangsspannung nicht negativer als -0,3 V ist, wird keine bestimmte Reihenfolge der Signale vorgeschrieben. Eingangsspannungen negativer als -0,3 V dürfen an den Eingangsanschlüssen erst 1 ms nach dem Anlegen der Betriebsspannung auftreten.

Wenn im Fehlerfall die Versorgungsspannung die angegebene Grenze überschreitet, sind zur Vermeidung von Ausfällen die Signale $\overline{\text{RAS}}$ und $\overline{\text{CAS}}$ in den inaktiven Zustand zu steuern.

Nachdem die Betriebsspannungen anliegen, benötigt der Speicher mindestens 8 REFRESH-Zyklen, um seinen normalen Betrieb zu gewährleisten.

Grenzwerte (USS = 0 V)

Kennwert	Kurzzeichen	U 2164 D 20/	Einheit		
		min.	max.		
Spannung an allen Eingängen	U _T	-2,0	7,0	V	
Ausgangsspannung	U _O	-2,0	7,0	V	
Betriebsspannung	u _{cc}	-0,5	7,0	V	
Betriebstemperatur	∂ ₂	0	70	*C	
Lagerungstemperatur	∂stg	-65	150	*C	
Verlustleistung	Pu		1	W	

Betriebsbedingungen (Die Zeitmessung erfolgt mit $t_T = 5$ ns.)

Kennwert	Kurz-	U 2164 D 20		U 2164 D 25		Ein-	Bedin-
	zeichen	min.	max.	min.	max.	heit	gungen
Betriebsspannung	UCC	4,5	5,5	4,75	5,25	v	
Eingangsspannung High	UIH	2,4	5,5	2,4	5,5	V	
Eingangsspannung Low	UIL	-2,0	0,8	-2,0	0,8	V	1)
Übergangszeit (Anstieg/Abfall)	tT	3	50	3	50	ns	2)
RAS-Vorladezeit	TRHRL	120		200		ns	3)
RAS-Haltezeit	TCLRH	110	1	150		ns	100
CAS-Haltezeit	TRLCH	200		250		ns	
RAS-CAS-Verzögerungszeit	TRLCL	45	90	75	100	ns	1
CAS-Vorladezeit	TCHCL	45	10000	90		ns	
CAS-RAS-Vorladezeit	TCHRL	-20		-20		ns	
Zeilenadressenvorhaltezeit	TZVRL	0		0		ns	1
Zeilenadressenhaltezeit	TRLZX	30		45		ns	
Spaltenadressenvorhaltezeit	TSVCL	0		0		ns	
Spaltenadressenhaltezeit	Toron	45		60		ns	
Spaltenadressenhaltezeit von RAS _{an}	TRUSK	135		160		ns	1
Refresh-Periode	t _{REF}		2		2	ms	

Kennwert	Kurz-	U 2164 D 20		U 2164 D 25		Ein-	Bedin-
	zeichen	min.	max.	min.	max.	heit	gunger
READ/WRITE-Zyklus							
Zykluszeit	TRUBL	330		460		ns	
RAS-Impulsbreite	TRLRH	200	10000	250	10000	ns	
CAS-Impulsbreite	TCLCH	110	10000	150	10000	ns	
Lesekommandovorhaltezeit	TWHCL	0		0		ns	
Lesekommandohaltezeit	T _{RHWL}	0	1	0	1	ns	1
WE-Vorhaltezeit	TWLCL	0		0	1	ns	4)
WE-Haltezeit	TCLWH	40		50		ns	1000
WE-Haltezeit von RAS an	TRLWH	130		150		ns	
WE-Impulsbreite	TWLWH	45		50		ns	
WE-RAS-Vorhaltezeit	TWLRH	55		60		ns	
WE-CAS-Vorhaltezeit	TWLCH	55		60		ns	
Dateneingangsvorhaltezeit	TIVCL	0		0		ns	5)
	TIVUL.			1			
Dateneingangshaltezeit	TCLIX	45		60		ns	5)
	TWLIX	1300					
Dateneingangshaltezeit von RAS an	TRLIX	135		160		ns	
SHIPP STANDARD SANDARD SANDARD	RLIX	- 1000				1.00	
READ-MODIFY-WRITE-Zyklus							
RW-Zykluszeit bei RMW	TRLRL	375		495		ns	
RAS-Impulsbreite bei RMW	TRLRH	230	10000	285	10000	ns	
CAS-Impulsbreite bei RMW	TCLCH	140	10000	185	10000	ns	1
RAS-WE-Verzögerungszeit	TRLWL	175		220		ns	4)
CAS-WE-Verzögerungszeit	TCLWL	85		120		ns	4)
PAGE-MODE-Zyklus	GENE						
RW-Zykluszeit im PGM	TCLCL	200		280		ns	
RMW-Zykluszeit im PGM	TRLRH	230		325		ns	
CAS-Vorladezeit im PGM	TCLCH	80		128	1	ns	
RAS-Impulsbreite im PGM	TCHWL	200	10000	300	10000	ns	
CAS-Impulsbreite im PGM	TCHCL	110	10000	150	10000	ns	
Lesekommandohaltezeit im PGM	TCLCL	0		0	100000	ns	

Bedingungen

- Die Eingangsspannung Low darf nicht länger als 40 ns negativer als -0.3 V sein.
- $\mathbf{U}_{\mathrm{IHmin}}$ und $\mathbf{U}_{\mathrm{ILmax}}$ sind Bezugspunkte für die Zeitmessung der Eingangssignale, Übergangszeiten werden zwischen U_{IH} und U_{IL} gemessen.
- 3) Betrieb innerhalb T_{RLCL} sichert, daß T_{RLOV} max. eingehalten wird $(T_{RLCLmax}$ ist nur als
- Bezugspunkt angegeben.). Wenn $T_{RLCL} > T_{RLCLmax}$, dann wird die Zugriffszeit T_{RLOV} verlängert. 4) T_{WLVL} , T_{RLWL} und T_{CLWL} sind keine einschränkenden Betriebsparameter. Wenn $T_{WLCL} \geq T_{WLCLmin}$, ist der Zyklus ein EARLY-WRITE-Zyklus und der Datenausgang bleibt während des gesamten CAS-Zyklusses hochohmig. Wenn $T_{CLWL} = T_{CLWLmin}$ und $T_{RLWL} = T_{RLWLmin}$, ist der Zyklus ein READ-WRITE-Zyklus und der Datenausgang gibt die Information der gelesenen Zelle ab. Wenn keine dieser Bedingungen erfüllt ist, ist der Zustand des Datenausganges zur Zugriffszeit unbestimmt.
- 5) Diese Parameter beziehen sich auf CAS in EARLY-WRITE- und auf WE in DELAYED-WRITE- bzw. READ-MODIFY-WRITE-Zyklen.
- 6) Der Ausgang ist abgeschaltet (hochohmig), RAS und CAS sind High (logisch 1).
- Annahme, daß T_{RLCL} = T_{RLCLmax}
- gemessen mit 2 TTL-Lasten, 100 pF 8)
- 9) T_{CHOXmax} definiert die Zeit, zu welcher der Datenausgang hochohmig wird, diese Zeit ist nicht auf einen Pegel bezogen.

Statische Kennwerte

Kennwert	Kurz-	U 2164 D 20		U 2164 D 25		Ein-	Bedingung
	zeichen	min.	max.	min.	max.	heit	V-10-0-11-10-11
Betriebsstrom (mittlerer Wert bei RAS-CAS-Zyklen)	I ₀₀₁		55		55	mA	IRLRL*IRLRLmi Sa = 25 °C
Ruhestrom	I ₀₀₂		5		5	mA	RAS = U _{IH} DO = High Z
Refreshstrom (mittlerer Wert)	I _{DD3}		40		40	mA	TRLEL =TRLELMIN
PAGE-MODE-Strom (mittlerer Wert)	I _{DD4}		40		40	mA	RAS = UIL ICLCL=ICLCLmi
Eingangsleckstrom (beliebiger Eingang, alle anderen Pins: O V)	ı	-10	10	-10	10	μА	ϑ _a = 25 °C U ₀ = 05,5 V
Ausgangsleckstrom (DD = High Z)	I _C	-10	10	-10	10	μА	U ₀ =05,5 v ⁶
Ausgangsspannung H	UDH	2,4		2,4		V	$I_{OUT} = -4 \text{ mA}$
Ausgangsspannung L	UOL		0,4		0,4	V	$I_{cust} = 4 \text{ mA}$
Eingangskapazität (A O A 7, DI)	c _I		6		6	pF	∂ = 25 °C
Eingangskapazität (RAS, CAS, WE)	C,		8		8	pF	∂ = 25 °C
Ausgangskapazität	C _D		7		7	pF	CAS = UTH

Dynamische Kennwerte

Kennwert	Kurz- zeichen	U 2164 D 20		U 2164 D 25		Ein-	Bedingung
		min.	max.	min.	max.	heit	
RAS-Zugriffszeit CAS-Zugriffszeit Ausgangsabschaltzeit	T _{RLOV} T _{CLOV} T _{CHOX}	0	200 - 110 50	0	250 150 50	ns ns	7) 8) 0,5 V über Lo
				×			8,5 V unter High 9)

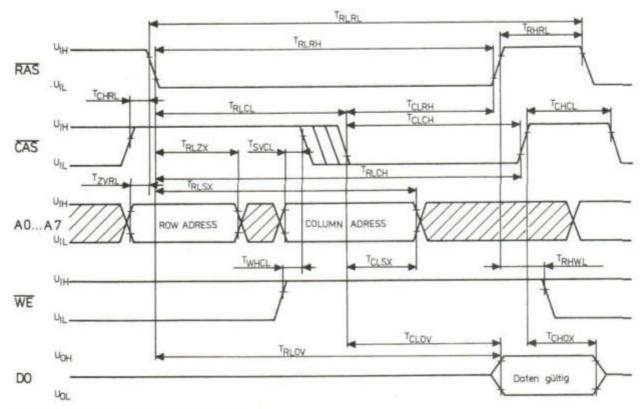


Bild 4: Impulsdiagramm READ-Zyklus

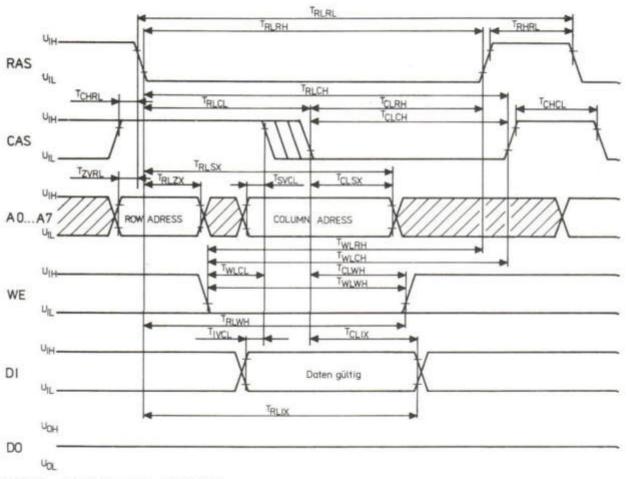


Bild 5: Impulsdiagramm WRITE-Zyklus

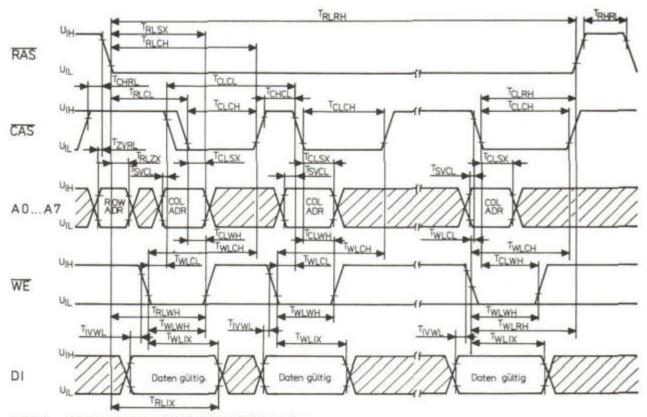


Bild 6: Impulsdiagramm PAGE-MODE-WRITE-Zyklus

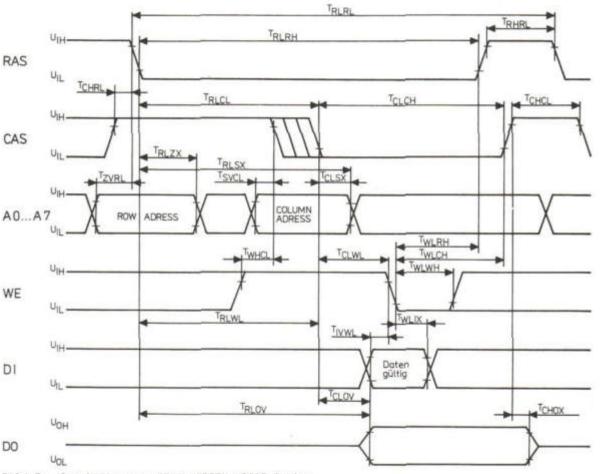


Bild 7: Impulsdiagramm READ-MODIFY-WRITE-Zyklus

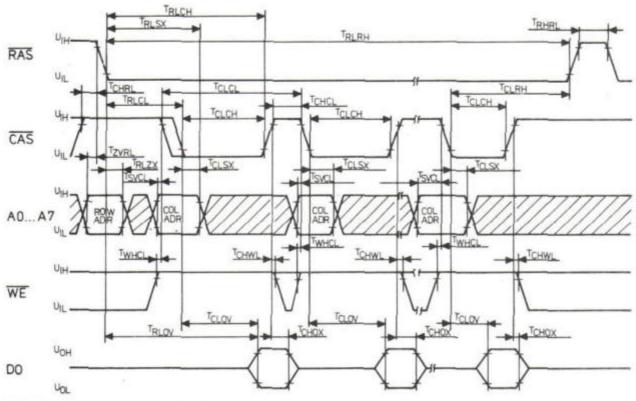


Bild 8: Impulsdiagramm PAGE-MODE-REAU-Zvklus

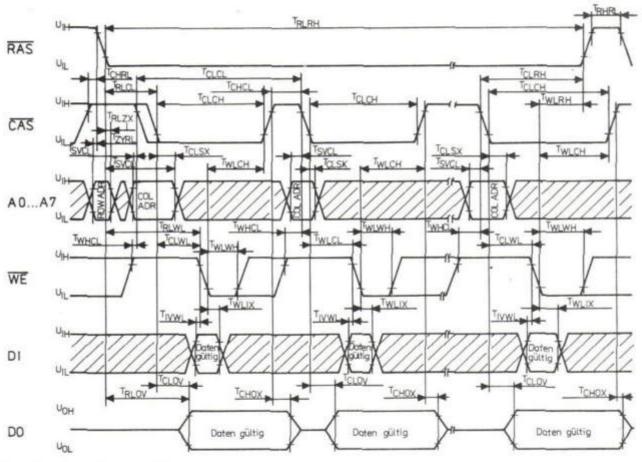


Bild 9: Impulsdiagramm PAGE-MODE-READ-MODIFY-WRITE-Zyklus

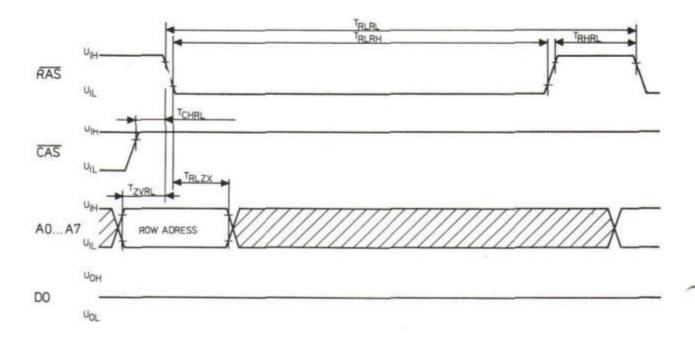


Bild 10: Impulsdiagramm RAS-ONLY-REFRESH-Zyklus

Dieses Datenblatt gibt keine Auskunft über Liefermöglichkeiten und beinhaltet keine Verbindlichkeiten zur Produktion. Die gültige Vertragsunterlage beim Bezug der Bauelemente ist der Typstandard. Rechtsverbindlich ist jeweils die Auftragsbestätigung.

Änderungen im Zuge der technischen Weiterentwicklung vorbehalten.

Die Behandlungsvorschriften für MOS-Bauelemente sind unbedingt einzuhalten, da andernsfalls eine Reklamation nicht anerkannt werden kann.

11/87

veb mikroelektronik karl marx erfurt stammbetrieb

DDR-5023 Erfurt, Rudolfstraße 47 Telefon 5 80, Telex 061 306

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR ~ 1026 Berlin, Alexanderplatz 6 Telex: BLN 114721 elei. Telefon: 2180