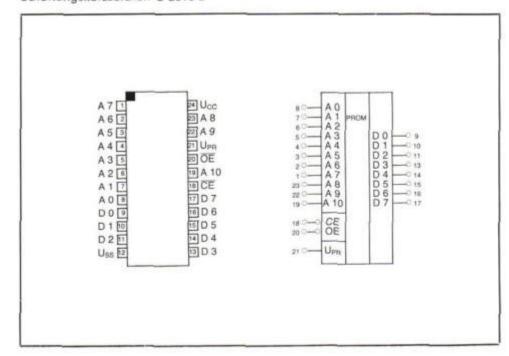

mikreelektronik

U 2616 D U 2716 C

Bild 1: Anschlußbelegung und Schaltungskurzzeichen U 2716 C

Der Schaltkreis U 2716 C ist ein statischer elektrisch programmierbarer und UV-löschbarer Festwertspeicher (16 k EPROM).


Der U 2716 C wird in n-Kanal-Silicon-Gate-Technologie hergestellt und befindet sich in einem 24poligen DIL-

Keramikgehäuse.

Der Schaltkreis U 2616 D ist ein herstellerprogrammierter Festwertspeicher (16 k PROM). Der U 2616 D wird in n-Kanal-Silicon-Gate-Technologie hergestellt und befindet sich in einem 24poligen DIL-Plastgehäuse. Anschlußbelegung, statische und dynamische Kennwerte des U 2616 D sind identisch mit den entsprechenden Kennwerten des U 2716 C.

Die Schaltkreise besitzen eine Speicherkapazität von 16 384 bit mit einer Organisation von 2048 x 8 bit.

Bild 2: Anschlußbelegung und Schaltungskurzzeichen U 2616 D

Bezeichnung der Anschlüsse:

A∅...A1∅ Adresseneingänge

CE Chipaktivierungseingang

OE Eingang zur Freigabe

der Ausgänge

U_{PR} Programmiereingang

DØ...D7 Datenein--ausgänge

Bild 3: Gehäuseabmessungen U 2716 C

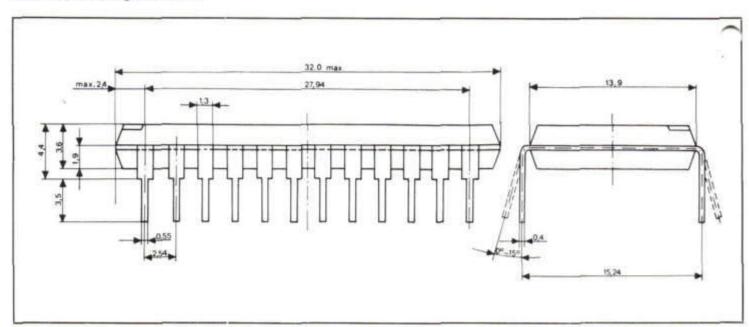


Bild 4: Gehäuseabmessungen U 2616 D

Kurzcharakteristik U 2716 C

- elektrisch programmierbarer, UVlöschbarer Festwertspeicher mit einer Organisation von 2048 x 8 bit
- Betriebsspannung im Lesebetrieb:
 U_{CC} = 5 V
- Zugriffszeit im Lesezyklus:
 U 2716 C 45: T_{AVDV} = 450 ns
 U 2716 C 39: T_{AVDV} = 390 ns
 U 2716 C 35: T_{AVDV} = 350 ns
- im Standby-Modus um ca. 75 % geringerer Betriebsstrom
- three-state-Ausgänge, bidirektionale Datenpins
- zum Programmieren werden 50 ms Programmierimpulse mit TTL-Pegel verwendet
- byteweises Programmieren ist möglich
- Programmierung ist direkt auf der Leiterplatte möglich

Kurzcharakteristik U 2616 D

- durch den Hersteller elektrisch programmierter Festwertspeicher (PROM) mit einer Organisation von 2048 x 8 bit
- Betriebsspannung: U_{CC} = 5 V
- Zugriffszeit im Lesezyklus:
 U 2616 D 45: T_{AVDV} = 450 ns
 U 2616 D 39: T_{AVDV} = 390 ns
- im Standby-Modus um ca. 75 % geringerer Betriebsstrom
- three-state-Ausgänge

Betriebsart	Pin: 24	21	18	20	9; 11; 1317
Lesen	Ucc	U _{CC} ± 0,6 V	UIL	U _{IL}	Datenausgabe
Ausgänge nicht ausgewählt	Ucc	U _{CC} ± 0,6 V	UIL	U _{IH}	hochohmiger Zustand
Ruhezustand	Ucc	U _{CC} ± 0,6 V	UIH	UIL/UIH	hochohmiger Zustand
Programmieren	Ucc	UPR	UIH	U _{IH}	Dateneingabe
Programmierkontrolle	Ucc	UPR	UIL	UIL	Datenausgabe
Programmiersperre	Ucc	UPR	UIL	U _{IH}	hochohmiger Zustand

Tabelle 1: Zustandstabelle des U 2716 C

Betriebsart	Pin: 24	21	18	20	9; 11; 1317
Lesen Ausgänge nicht ausgewählt	U _{cc}	U _{CC} ± 0,6 V U _{CC} ± 0,6 V	U _{IL}	U _{IL} U _{IH}	Datenausgabe hochohmiger Zustand
Ruhezustand	Ucc	U _{CC} ± 0,6 V	UIH	U _{IL} /U _{IH}	hochohmiger Zustand

Tabelle 2: Zustandstabelle des U 2616 D

Beschreibung U 2716 C

Der Schaltkreis U 2716 C ist ein elektrisch programmierbarer, UV-löschbarer Festwertspeicher (EPROM) mit einer Speicherkapazität von 16 384 bit und einer Organisation von 2 k x 8 bit. Zur Auswahl des Speicherinhaltes stehen 11 Adresseneingänge (Spaltenauswahl: A 3 Zeilenauswahl: A 4 . . .

A 1∅) zur Verfügung.

Die Ausgabe und die Eingabe (bei Programmierung) der Daten erfolgt an den 8 Anschlüssen D Ø bis D 7. Der U 2716 C besitzt einen Chipaktivierungseingang (CE) und einen Eingang zur Freigabe der Ausgänge (OE). Im Ruhezustand (CE = U_{IH}) sind die Datenpins DØ bis D7 hochohmig. Die Aktivierung des Chips erfolgt mit CE = UII. Mit dem Eingang OE ist im Falle eines aktivierten Schaltkreises (CE = UIL) eine Beeinflussung des Zustandes der Ausgänge D∅ bis D7 möglich. Für OE = U_{IH} befinden sich die Pins D Ø bis D7 in hochohmigem Zustand, die Freigabe der Ausgänge erfolgt mit OE = UIL .

In den Programmierbetrieb wird der EPROM dann geschaltet, wenn der Pegel an $U_{PR}=25\,V_{-1,5}^{+0,5}\,V$ erreicht. Die Versorgungsspannung beträgt wie im Normalbetrieb $5\pm0.25\,V$. Mit CE=

U_{IH}-Impulsen können die ursprünglichen H-Pegel der Ausgänge, die nach jeder UV-Löschung erscheinen, entsprechend der an den Datenleitungen anliegenden Information in den L-Zustand überführt werden. Es ist nicht notwendig, in einem Programmierzustand sequentiell alle Speicherplätze zu programmieren. Eine Einzelbyteprogrammierung ist möglich. Es werden folgende drei Zustände unterschieden:

Programmieren

Zum Programmieren ist bei anliegender Programmierspannung U_{PR} . $\overline{OE} = U_{IH}$ und stabilen Daten und Adressen für die Dauer T_{CHCL} . \overline{CE} an U_{IH} zu legen. Dabei ist zu beachten, daß die Programmierspannung gleichzeitig mit oder nach U_{CC} eingeschaltet und gleichzeitig mit oder vor U_{CC} abgeschaltet werden muß. Es ist nicht gestattet, den Schaltkreis bei Anliegen von $U_{PR} = 25 \, \text{V}$ in die Fassung zu stecken oder zu entnehmen.

Programmiersperre

Sperre der Programmierung (OE = U_{IL}) bei angelegter Programmierspannung. In diesem Zustand können Adressen und Daten gewechselt werden.

Programmierkontrolle

In diesem Zustand kann unter Programmierspannung der Inhalt des adressierten Speicherwortes an den Datenpins gelesen werden.

Durch die spezielle Gehäuseausführung kann die einprogrammierte Information mit UV-Licht gelöscht werden. Zur Löschung werden handelsübliche UV-C-Strahler mit einer Strahlungsdosis

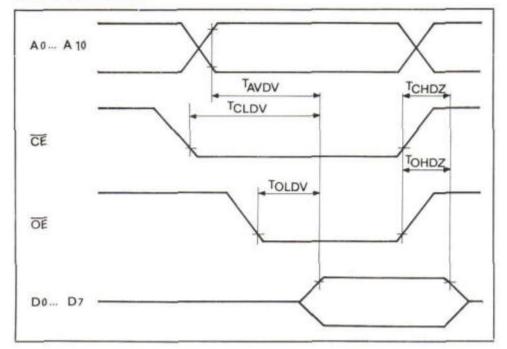
 $\sigma_{\rm min} \ge 15 \, {
m Ws cm^2}$ für Quarzglasdeckel, $\lambda_{
m UV} = 254 \, {
m nm}$

 $a_{\rm min} \ge 30 \, {\rm Ws} \, {\rm cm}^2$ für Keramikdeckel, $\lambda_{\rm UV} = 254 \, {\rm nm}$

verwendet.

Dabei sollte der Abstand zwischen Gehäuseoberkante des Schaltkreises und dem Lampenkolben ≤ 2,5 cm betragen. In Abhängigkeit vom Löschgerätetyp beträgt die Zeit zum sicheren Löschen das Dreifache der latenten Löschzeit. Die latente Löschzeit ist die Zeit, nach der die Speicherinformation gerade nicht mehr nachweisbar ist. Die Löschzeit soll nicht weniger als 10 min betragen. Verunreinigungen auf den Deckeln beeinflussen die Transparenz und damit die Löschzeit. Mindestens 20 Programmier-Lösch-Zyklen sind möglich. Bei höherer Anzahl von Programmier-Lösch-Zyklen ist eine Erhöhung der Löschzeit zu erwarten.

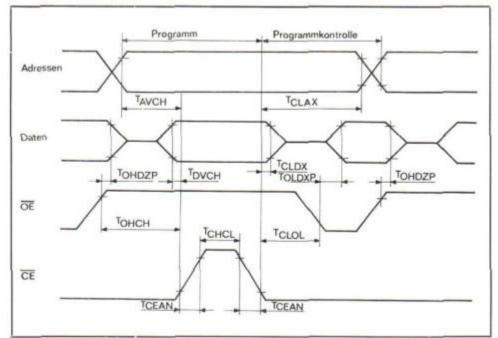
veb mikroelektronik karl marx erfurt


DDR-5010 Erfurt, Rudolfstraße 47 Telefon: 5 80, Telex: 061 306

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Telex: BLN 114721 elei, Telefon: 2180

Bild 6:


Dynamisches Verhalten

Dieses Datenblatt gibt keine Auskunft über Liefermöglichkeiten und beinhaltet keine Verbindlichkeiten zur Produktion. Die gültigen Vertragsunterlagen beim Bezug der Bauelemente sind die Type standards.

Rechtsverbindlich ist jeweils die Auftragsbestätigung. Anderungen im Zuge der technischen Weiterentwicklung vorhabelten

Bild 7: Programmierbedingungen

Hinweis

Die Behandlungsvorschriften für MOS-Bauelemente sind unbedingt einzuhalten, da andernfalls eine Reklamation nicht anerkannt werden kann.

Beschreibung U 2616 D

Der Schaltkreis U 2616 D ist ein durch den Hersteller elektrisch programmierter Festwertspeicher (PROM) in 24poligem DIL-Plastgehäuse. Anschlußbelegung, Grenzwerte, statische und dynamische Kennwerte (Funktion im Lesebetrieb) sind identisch mit den entsprechenden Angaben des U 2716 C

gleicher Adressenzugriffszeit. Die Bestellung der durch den Anwender benötigten Bitmuster erfolgt nach dem Werkstandard des veb mikroelektronik "karl marx" erfurt.

Grenzwerte

(Spannungen auf $U_{SS} = 0 \text{ V bezogen}$)

Kennwert	Kurzzeichen	min.	max.	Einheit
Spannungen an allen Pins außer U _{PR}	U	-0,5	6,5	V
Programmierspannung ¹)	Upp	-0,5	26,5	V
Gesamtverlustleistung	P _{tot}	1	1	W
Umgebungstemperatur	ϑ_a	0	70	°C
Lagerungstemperatur	ϑ_{stg}	-55	125	°C

¹⁾ nur U 2716 C

Statische Kennwerte

(Spannungen auf $U_{SS} = 0 \text{ V bezogen}$)

Kennwert	Kurz- zeichen	Meß- bedingung	min.	typ.	тах.	Einheil
Betriebsspannung	Ucc		4,75	5	5,25	٧
Betriebsspannung an U _{PR} im Nicht-Programmierzustand	U _{PRR}		U _{CC} -0,6	Ucc	U _{CC} +0,6	V
Eingangs-Low-Spannung	UIL	1	-0,3		0,8	V
Eingangs-High-Spannung	UIH		2,0		Ucc+1	v °C
Betriebstemperatur	ϑ_o		2,0 0	25	70	°C
Eingangsreststrom	l ₁	$U_1 = 5.5 \text{V}$			0,1	mA
Ausgangsreststrom	lo	$\overline{OE} = 5.5 \text{ V}$ $\overline{OE} = U_{1H}$			0,1	mA
Ausgangs-Low-Spannung	UoL	IOL = 2.1 mA			8,0	V
Ausgangs-High-Spannung	U _{OH}	I _{OH} = 0,4 mA	2,0			V
Eingangskapazität A Ø A 1Ø; CE; OE	Cı				6	pF
Ausgangskapazítät	Co	$\overline{CE} = U_{1H}$	1		12	pF

Kennwert	Kurz- zeichen	Meß- bedingung	U 2616 D 45 U 2716 C 45 min. max.	U 2716 C 35	U 2716 C 39 U 2616 D 39 min. max.	Einheit
Statische Stromaufnahme	Іссор	$\overline{CE} = U_{IL}$ $\overline{OE} = U_{IL}$	100	120	100	mA
Statische Stromaufnahme im Ruhebetrieb	I _{CCR}	$\overline{CE} = U_{IH}$ $\overline{OE} = U_{IH}$	25	30	25	mA
Stromaufnahme an U _{PR} im Lesebetrieb	I _{PROP}	U _{PR} = 5,25	5	6	5	mA
Statische Stromaufnahme an U _{PR} während des Programmierimpulses ¹)	I _{PR2} p		30	40	30	mA

¹⁾ nur U 2716 C

Dynamische Kennwerte

(Spannungen auf U_{SS} = 0 V bezogen)

Kennwert	Kurz- zeichen	Meß- bedingung	U 2616 D 45 U 2716 C 45 min. max.	U 2716 C 35	U 2716 C 39	Einheit
		-	IIIIII IIIGA	1111111	THE TOTAL I	_
Adressenzugriffszeit	TAVDV	CE=OE= U _{IL}	450	350	390	ns
CE-Zugriffszeit	TCLDV	OE = UIL	450	350	390	ns
Verzögerung OE-Ausgang aktiv	TOLDV	$\overline{CE} = U_{JL}$	120	120	120	ns
Verzögerung OE-Ausgang hochohmig	T _{OHDZ}		100	100	100	ns
Verzögerung CE-Ausgang hochohmig	T _{CHDZ}		120 [‡]) 100 ²)	120	120 ³) 100 ⁴)	ns

Programmierbedingungen

Kennwert	Kurz- zeichen	min.	typ.	max.	Einhei
Programmierspannung	UPR	24	25	26	V
Betriebstemperatur	Dap.	20	25	30	v "C
Adressenvorhaltezeit	TAVCH	2			μs
OE-Vorhaltezeit	Тонсн	2			ITZ
Datenvorhaltezeit	Tovch	2	1	1	μs
Adressenhaltezeit	T _{CLAX}	2			μs
OE-Haltezeit	TCLOL	2	1	1	115
Datenhaltezeit	TCLDX	2			μѕ
Verzögerung ŌE-Ausgang (Œ = U _{IL})	TOHDZP	0		120	ns.
Verzögerung OE-Ausgang aktiv (CE = U _{IL})	TOLDXP			120	ns
Programmierimpulsdauer	T _{CHCL}	45	50	55	ms
CE-Anstiegs- und Abfallzeit	T _{CEAN}	10			ns

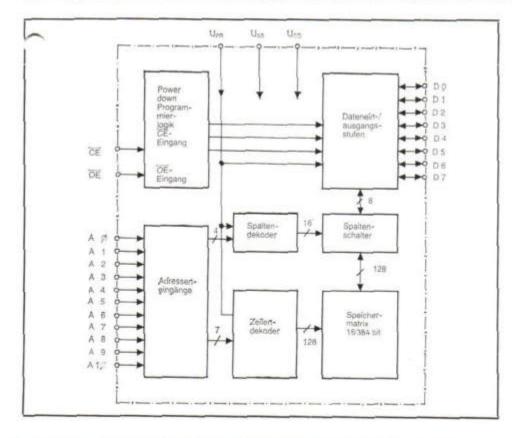


Bild 5: Blockschaltbild U 2716 C/U 2616 D

¹⁾ nur U 2716 C 45

²⁾ nur U 2616 D 45

³⁾ nur U 2716 C 39

⁴⁾ nur U 2616 D 39