

Information

32 k EPROM U 2732 C

Der Schaltkreis U 2732 C ist ein statischer, elektrisch programmierbarer und UV-löschbarer Pestwertspeicher (EPROM). Der U 2732 C wird in n-Kanal-Silicon-Gate-Technologie hergestellt und befindet sich in einem 24poligen DIL-Keramikgehäuse.

Der Schaltkreis hat eine Speicherkapszität von 32768 bit mit einer Organisation von 4096 x 8 bit.

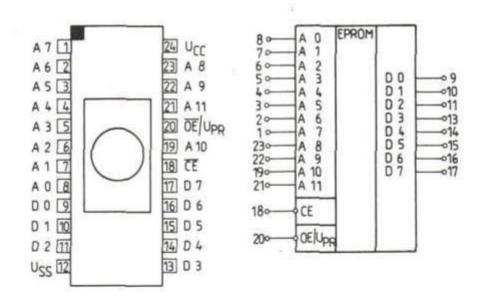


Bild 1: Anschlußbelegung und Schaltungskurzzeichen

Bezeichnung der Anschlüsse:

A O ... A 11

Adresseneingänge

CE

Chipaktivierungseingang

OE/UPR

Eingang zur Freigabe der Ausgänge/

Programmiereingang

D 0 ... D 7

Datenein-/-ausgänge

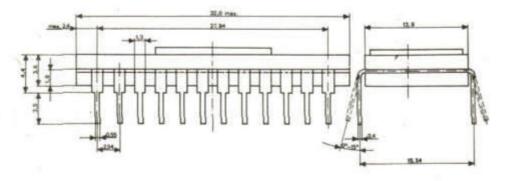


Bild 2: Gehäuseabmessungen

Kurzcharakteristik

 elektrisch programmierbarer, UV-löschbarer Festwertspeicher mit einer Organisation von 4096 x 8 bit

- Betriebsspannung im Lesebetrieb:

Ugc = 5 V

- Zugriffszeit im Lesezyklus:

U 2732 C 35: t_{AVDV} = 350 ns

U 2732 C 45: t_{AVDV} = 450 ns

U 2732 C 55: t_{AVDV} = 550 ns

- im Standby-Modus um ca. '80 % geringerer Betriebsstromverbrauch
- Tri-state-Ausgänge, bidirektionale Datenpins
- Programmierimpulsdauer von 50 ms
- byteweises Programmieren möglich
- Programmierung direkt auf der Leiterplatte möglich
- 24poliges DIL-Keramikgehäuse mit UV-Licht durchlässigem Fenster

Betriebsart	Pin:	U _{CC}	18 CE	20 OE/U _{PR}	9 11; 13 17 D O D 7
Lesen Ausgänge nicht ausgewählt Ruhezustand Programmieren Programmierkontrolle Programmiersperre		ncc ncc ncc ncc ncc	DIT DIT DIT DIT DIT	UIL UIH UIH/UIL UPR UPR UPR	Datenausgabe hochohmiger Zustand hochohmiger Zustand Dateneingabe Datenausgabe hochohmiger Zustand

Beschreibung

Der Schaltkreis U 2732 C ist ein elektrisch programmierbarer, UV-löschbarer Festwertspeicher (EPROM) mit einer Speicherkapazität von 32768 bit und einer Organisation von 4 k x 8 bit. Zur Auswahl des Speicherinhaltes stehen 12 Adresseneingänge (Spaltenauswahl: A 0 ... A 3, Zeilenauswahl: A 4 ... A 11) zur Verfügung.

Der U 2732 C besitzt einen Chipaktivierungseingang ($\overline{\text{CE}}$) und einen kombinierten Eingang ($\overline{\text{OE}}/\text{U}_{\text{PR}}$) zur Freigabe der Ausgänge bzw. Zuführung der Programmierspannung im Programmierbetrieb.

Im Ruhezustand ($\overline{\text{CE}} = \text{U}_{\text{IH}}$) sind die Datenpins hochohmig; die Stromaufnahme beträgt in diesem Zustand nur ca. 20 % des im ausgewählten Zustand erforderlichen Wertes. Die Aktivierung des Chips erfolgt mit $\overline{\text{CE}} = \text{U}_{\text{IL}}$ mit gleicher Zugriffszeit wie beim Wechsel der Adressen. Mit dem Eingang $\overline{\text{CE}}/\text{U}_{\text{PR}}$ ist im Falle eines aktivierten Schaltkreises ($\overline{\text{CE}} = \text{U}_{\text{IL}}$) eine Beeinflussung des Zustandes der Ausgänge D 0 ... D 7 möglich. Für $\overline{\text{OE}} = \text{U}_{\text{IH}}$ befinden sich die Pins D 0 ... D 7 im hochohmigen Zustand, die Freigabe erfolgt mit $\overline{\text{OE}} = \text{U}_{\text{IL}}$. In den Programmierbetrieb wird der EPROM dann geschaltet, wenn der Pegel an $\overline{\text{OE}}/\text{U}_{\text{PR}} = 25 \pm 1$ V erreicht. Die Versorgungsspannung beträgt wie im Normalbetrieb 5 \pm 0,25 V. Mit $\overline{\text{CE}} = \text{U}_{\text{IL}}$ - Impulsen können die ursprünglichen H-Pegel der Ausgänge, die nach jeder UV-Löschung erscheinen, in den L-Zustand überführt werden.

Alle Eingänge des U 2732 C und die Anschlüsse D O ... D 7 sind mit integrierten Gateschutzelementen versehen.

Es ist nicht notwendig, in einem Programmierzustand sequentiell alle Speicherplätze zu programmieren. Eine Einzelbyteprogrammierung ist möglich. Es werden folgende drei Zustände Unterschieden:

Programmieren

Zum Programmieren ist bei anliegender Programmierspannung U_{PR} und bei stabilen Daten und Adressen für die Dauer t_{CHCL} \overline{CE} an U_{IL} zu legen. Dabei ist zu beachten, daß die Programmierspannung einschließlich Überschwingen 26 V nicht überschreiten darf und gleichzeitig mit oder nach U_{CC} eingeschaltet und gleichzeitig mit oder vor U_{CC} abgeschaltet werden muß. Es ist nicht gestattet, den Schaltkreis bei Anliegen von $U_{PR}=25$ V in die Fassung zu stecken oder zu entnehmen.

Programmaperre

Sperre der Programmierung (CE = UIH) bei angelegter Programmierspannung. In diesem Zustand können Adressen und Daten gewechselt werden.

Programmkontrolle

In diesem Zustand kann unter Programmierspannung der Inhalt des adressierten Speicherwortes an den Datenpins gelesen werden.

Durch die spezielle Gehäuseausführung kann die einprogrammierte Information mit UV-Licht gelöscht werden. Zur Löschung können Hg-Niederdruckstrahler (UV-C-Strahler) verwendet werden. Die UV-Wellenlänge sollte 254 nm betragen. Das Minimum für die Strahlungsdosis liegt bei 15 Ws/cm². Dabei darf der Abstand zwischen Gehäuseoberkante des Schaltkreises und dem Lampenkolben 2,5 cm nicht überschreiten.

In Abhängigkeit vom Löschgerätetyp beträgt die Löschzeit zum sicheren Löschen das Dreifache der latenten Löschzeit. Die latente Löschzeit ist die Zeit, nach der die Speicherinformation gerade nicht mehr nachweisbar ist. Die Löschzeit soll nicht weniger als 10 Minuten betragen. Verunreinigungen auf den Deckeln beeinflussen die Transparenz und damit die Löschzeit. Mindestens 20 Programmier-Löschzyklen sind möglich. Bei höherer Anzahl von Programmier-Löschzyklen ist eine Erhöhung der Löschzeit zu erwarten.

Grenzwerte (J_B = 0 ... 70 °C)

Kennwert	Kurzzeichen	min.	max.	Einheit
Spannung an allen schlüssen bezogen	An- U _G	-0,5	6,5	٧
Spannung an OE/U _{PR} Gesamtverlustleist		-0,5	26 1,5	V W
Umgebungstemperatu	ur Va	0	70	°c
Lagerungstemperatu		-55	125	°c

¹⁾ Für programmierte Schaltkreise gilt TGL 24951, Abschnitt 5. Für Prüfzwecke ist eine Lagerungstemperatur von 125 $^{\circ}$ C über eine Zeit von max. 48 Stunden zulässig.

Statische Kennwerte (Spannungen bezogen auf $U_{SS} = 0 \text{ V}; \quad \mathcal{J}_{ap} = 25 \text{ °C}$)

Kennwert I	Kurzzeichen	Meßbedingungen	min.	max.	Einheit
Betriebsspannung	Ugg		4,75	5,25	v
Eingangsspannung L	UTL		-0,3	0,8	v
Eingangsspannung H (außer Pin 20)	UIH		2	U _{CC} +1	٧
Eingangsspannung H (Pin 20) im Lesebetri	ieb UIH20		2	u _{cc}	v
Eingangsreststrom (außer Pin 20)	ī	$U_{CC} = 4.75 \text{ V}$ $U_{T} = 5.5 \text{ V}$ A 0 A 11 = U_{SS} $\overline{CE} = \overline{OE}/U_{PR} = U_{SS}$ D 0 D 7 = U_{CC}		0,01	mA
Eingangsreststrom (Pin 20)	1120	U _{CC} = 4,75 V OE/U _{PR} = U _I = 5,5 V A 0 A 11 = U _{SS} OE = U _{SS} D 0 D 7 = U _{CC}		1	mA
Ausgangsreststrom	I ₀	U _{CC} = 5,25 V U _{IL} = 0,8 V U _{IH} = 2,0 V OE/U _{PR} = 5,25 V A 0 A 11 so, deß bei OE = U _{IL} für U _O = 0 V - D 0 D 7 = U _{OH} und für U _O = 5,5 V - D 0 D 7 = U _{OL}		0,01	mA
Ausgangsspannung L	UOL	U _{CC} = 4.75 V OE/U _{PR} = U _{IL} = 0.8 V A 0 A 11 wie bei I _O - Messung		0,8	٧

Kennwert	Kurzzeichen	Meßbedingungen	min.	mex.	Einheit
Ausgangsspannung H	UOH	wie bei U _{OL} -Messung	2		v
statische Strom- aufnahme aktiv	ICC	$\frac{\overline{OE}}{U_{PR}} = U_{IH} = 5,5 \text{ V}$ $\overline{CE} = U_{IL}$		180	mA
statische Stromauf- nahme im Ruhezustand	ICCR	$\overline{CE} = \overline{OE}/U_{PR} = U_{IH}$ = 5.5 V		30	mA
Eingangskapazität (außer Pin 20)	CI	3443.32		6	pF
Eingangskapazität (Pin 20)	c _{I20}			20	pF
Ausgangskapazität	Co			12	pP

 $\frac{\text{Dynamische Kennwerte}}{(\text{U}_{\text{CC}} = 4.75 \text{ V; } \text{U}_{\text{IL}}, \text{ U}_{\text{OL}} \leq \text{0,8 V; } \text{U}_{\text{IH}}, \text{ U}_{\text{OH}} \geq \text{2 V; } \sqrt{s_{\text{p}}} = \text{25 °C})}$

Kennwert Kur	zzeichen	Meßbedingung	U 2732	C 35 max.	U 2732	C 45 max.	U 2732 min.	mex.	Einheit
Adressenzu- griffszeit	t _{AVDV}			350		450		550	ns
CE-Zugriffszeit	t CLDV			350		450		550	ns
Verzögerung OE - Ausgang aktiv	toldv			120		120		120	ns
Verzögerung OE - Ausgang hochohmig	toHDZ			100		100		100	ns
Verzögerung Œ - Ausgang hochohmig	toHDZ			100		100		100	ns
statische Stromauf- nahme an U _{pp} währen des Programmierimp.	IPR2P	U _{PR} = 25 V		30		30		30	mA

Programmierbedingungen

Kennwert	Kurzseichen	Meßbedingung	min.	typ.	me.x.	Einheit
Programmierspannung	Upp	U _{CC} = 5 V ± 5 %	24	25	26	v
Betriebstemperatur	UPR Vap		20	25	30	°c
Adressenvorhaltezeit	t _{AVCL}		2			/us
Datenvorhaltezeit	tDVCL]]	2	1]	,us
Adressenhaltezeit	tCHAX		0	1	1	us
OE-Haltezeit	tCHPL		2		1	us
Datenhaltezeit	tCHDX		2	1	1	/us
Verzögerung CE - Ausgang hochohmig	tCHDZP		0		120	ns
CE-Zugriffszeit im Programmierbetrieb	tCLDVP	OE = UIL			1	/us
Programmierimpuladaue	r toLon		45	50	55	ms
U _{PR} - Anstiegszeit	t _{PAN}		50			ns
U _{PR} - Setzzeit L	t _{PLCL}		2 2			/us
U _{PR} - Setzzeit H	t PHCL		2			Jus

Bild 3: Programmierbedingungen

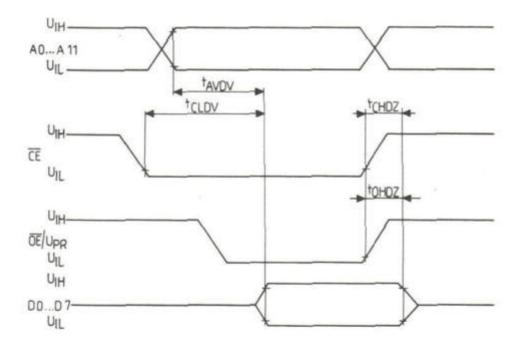


Bild 4: Dynamisches Verhalten

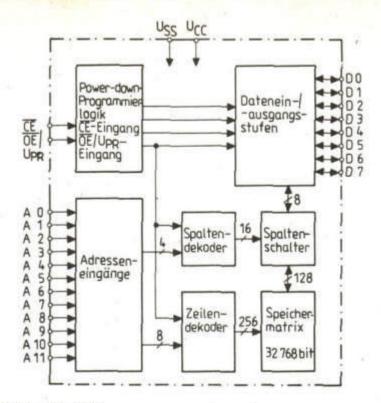


Bild 5: Blockschaltbild

Internationale Vergleichstypen

Тур	Hersteller			
2732	Intel			
HN 462532	Hitachi			
HN 462732	Hitachi			
AN 2732 PC	AMD			
TMM 2732	Toshiba			
F 2732	Fairchild			
MBM 2732	Fujitsu			
M 5 L 2732	Mitsubishi			

Dieses Datenblatt gibt keine Auskunft über Liefermöglichkeiten und beinhaltet keine Verbindlichkeiten zur Produktion. Die gültige Vertragsunterlage beim Bezug der Bauelemente ist der Typstandard. Rechtsverbindlich ist jeweils die Auftragsbestätigung. Änderungen im Zuge der technischen Weiterentwicklung vorbehalten.

Die Behandlungsvorschriften für MOS Bauelemente sind unbedingt einzuhalten, da andernfalls eine Reklamation nicht anerkannt werden kann.

04/86

veb mikroelektronik karl marx erfurt

DDR-5023 Erfurt, Rudolfstraße 47 Telefon 5 80, Telex 061 306

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Telex: BLN 114721 elei, Telefon: 2180