mikreektronik

Information

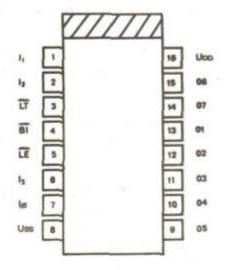
U 40511 D

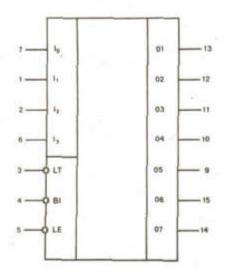
2/84

Hersteller:

VEB Zentrum für Forschung und Technologie

Mikroelektronik Dresden


Schaltkreis enthält einen BCD-zu-7-Segment-Dekoder mit Zwischenspeicher


Dekadierung im Hexadezimalbereich

Direktes Treiben von LED-Displays mit gemeinsamer Katode

CMOS-Technologie

Anschlußbelegung und Schaltzeichen

Anschlußbelegung - Ansicht von oben

Markierung kennzeichnet Seite

mit Pin 1

la bis la

- BCD-Eingänge

Or bis On Uss

- Ausgänge

UDD

- Masse Betriebsspannung LT

Lampentest (für Test der Hell-

schaltung)

Dunkelsteuereingang

LE

- Latch-Aktivierung

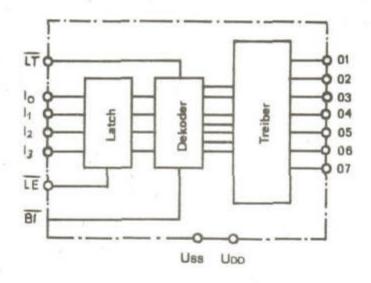
Gehäuse:

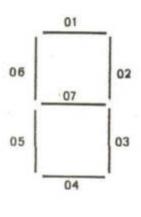
16poliges DIL-Plastgehäuse Bauform: 21.2.1.2.16 nach TGL 26713

ca. 1,2 g

Masse: Typstandard: TGL 38693

Funktionsbeschreibung


Mit Hilfe des Signales LE erfolgt die Aktivierung des Eingangszwischenspeichers. Die Eingangssignale können somit zwischengespeichert oder sofort zum Dekoder geschaltet werden. Die Zwischenspeicherung erfolgt mit


der L/H-Flanke des LE-Steuersignales. Die Signale LT und BI erfüllen die Funktionen "Display-Test" und "Dunkeltastung".

Wahrheitstabelle

	Display	07	05	05	04	03	02	01	10	1,	l ₂	l _a	LT	BI	E
x = ohne Einfluß auf der	8	1	1	1	1	1	1	1	×	×	×	×	0	×	K
Ausgang	aus	0	0	0	0	0	0	0	×	×	×	×	1	0	X,
i) = Die im Latch gespei-	0	0	1	1	1	1	1	1	0	0	0	O	1	1	0
cherten Daten wer-	1	0	0	0	0	1	1	0	1	0	0	0	1	1	0
den dekodiert. Im Latch ist die Ein-	2	1	0	1	1	0	1	1	0	1	0	0	1	1	0
gangsbelegung ge-	3	1	0	0	1	1	1	1	1	1	0	0	1	1	0
speichert, die wäh-	4	1	1	0	0	1	7	0	0	0	1	0	7	7	0
rend des letzten	5	1	1	0	1	1	0	1	1	0	1	0	1	1	0
L/H-Uberganges des	Fi .	1	1	1	1	1	0	1	0	1	3	0	1	1	0
LE-Steuersignales vorlag.	7	0	0	0	0	1	1	1	1	1	1	0	1	1	0
volleg.	Ř	1	1	1	1	1	1	1	0	0	0	1	1	1	0
	5	1	1	0	1	1	1	1	1	0	0	1	1	1	0
	R	1	1	1	0	1	1	1	0	1	0	1	1	1	0
	1	1	1	1	1	1	0	0	T	1	0	1	1	1	0
	0	0	1	1	1	0	0	1	0	0	1	1	1	1	0
	3	1	0	1	1	1	1	0	1	0	1	1	1	1	0
	F	1	1	1	1	0	0	1	0	1	1	1	1	1	0
	F	1	3	3	0	0	0	1	1	1	1	1	1	1	0
	*/			[7]	200	1)	10.50	117	*	×	×	×	1	1	1

Blockschaltbild und Segmentzuordnung

Technische Daten

(alle Spannungen sind auf US5 bezogen)

Grenzwerte

Kenngröße	Symbol	Wert	Einheit	
Betriebsspannung	Upp	- 0,5 18	V	
Eingangsspannung	Ut	-0.5 Upp $+0.5$	V	
Ausgangsspannung	Uo	- 0,5 Unp + 0,5	V	
Eingangsstrom	11:1	10	mA	
Verlustleistung	Pv	300	mW	
Verlustleistung je Ausgang	Pvo	100	mW	
Lagertemperatur	$\vartheta_{\rm s}$	- 55 125	°C	

Betriebsbedingungen

Kenngröße	Symbol	Bedingungen	Wert		
Betriebsspannung	Upp		3 15 V		
Umgebungs- temperatur	Ø a		-2570 °C		
Eingangsspannung	UIL	$U_{DD} = 5 V$	- 0,3 1,5 V		
L		$U_{\rm DD} = 10 \text{ V}$	-0,33 V		
		$U_{\rm DD}=15{\rm V}$	-0,34 V		
Eingangsspannung	UIH	$U_{\rm DD} = 5 \text{ V}$	3,5 5,3 V		
Н		$U_{\mathrm{DD}} = 10 \mathrm{V}$	7 10,3 V		
		$U_{\rm DD} = 15 \rm V$	11 15,3 V		

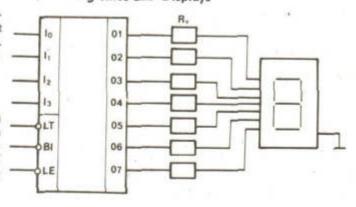
Dynamische Kennwerte

Kenngröße	Symbol		Einstellwerte				
	-	(V)		(°C)	(V)	MaxWerte	
Anstiegszeit	tTLH	5	50	25	5	100 ns	
L/H		10			10	75 ns	
		15			15	65 ns	
H/L	tru.	5			5	310 ns	
		10			10	185 ns	
		15			15	160 ns	
Datenlaufzeit	t _{PHL}	5			5	1040 ns	
H/L		10				420 ns	
		15			10 15	300 ns	
L/H	tplH	5			5	1320 ns	
		10			10	520 ns	
		15			15	360 ns	

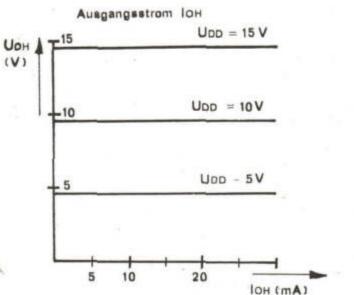
Statische Kennwerte

(bei Uss = 0 V)

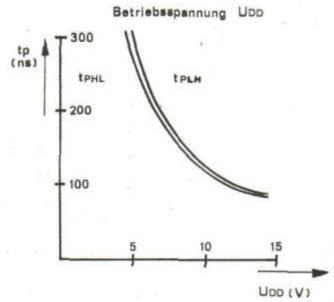
Kenngröße	Symbol			instellwe	erte		We	rt
		(V)	(V)	(mA)	(°C)	(V)	min.	max.
Ruhestrom	lop	5			25	5		5 μA
					70			150 µA
		10			25	10		10 µA
					70			300 µA
		15			25	15		20 µA
					70			600 µA
L-Ausgangsstrom	lon	5	0,4		25	5	0,51 mA	
					70		0,42 mA	
		10	0,5		25	10	1,30 mA	
					70		1,10 mA	
		15	1,5		25	15	3,40 mA	
					70		2,80 mA	81
L-Ausgangsspannung	UoL			-0,001	25	5		0,05 V
					70			0.05 V
					25	10		0,05 V
					70			0,05 V
					25	15		0,05 V
					70			0,05 V
H-Ausgangsspannung	Uon	5		- 10	25	5	3,9 V	
				- 25	25		3,1 V	
			4	- 10	70		3,9 V	
				- 25	70		3,5 V	
		10		- 10	25	10	9,0 V	
				- 25	25		8,3 V	
				- 10	70		9,0 V	
		15		- 10	25	15	14,0 V	
				- 25	25		13,5 V	
				- 10	70		14,0 V	
Eingangsreststrom	i lin i	15			25	15	0.1 µA	
					70		1,0 µA	
Eingangskapazität	Ci					15		7,5 pF

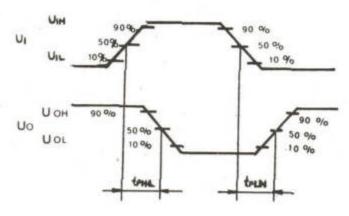

Behandlungshinweise

Die Behandlungvorschriften des Herstellers sind einzuhalten. Logische Eingangssignale dürfen nicht angelegt werden, wenn die Betriebsspannung abgeschaltet ist. Alle unbenutzten Eingänge müssen entweder mit Upp oder Uss verbunden sein.


Applikation

Der typische Einsetzfall ist die direkte Ansteuerung von 7-Segment-Displays mit gemeinsamer Katode. Durch Dekodierung der Pseudotetraden können die Buchstaben A bis F dargestellt werden; hierdurch ist die Darstellung von Héxadezimalzahlen möglich (z. B. Anzeige von Bus-Zuständen in Mikrorechnern).


Ansteuerung eines LED-Displays



Funktion Ausgangsspannung/Ausgangsstrom lox

Funktion Gatterlaufzeit/Betriebsspannung UDD

BE-Nr. U 40511 D: 137 87 47 009 405117

Die vorliegenden Datenblätter dienen ausschließlich der Information! Es können daraus keine Liefermöglichkeiten oder Produktionsverbindlichkeiten abgeleitet werden. Änderungen im Sinne des technischen Fortschritts sind vorbehalten.

Herausgeber:

veb applikationszentrum elektronik berlin in veb kombinet mikroelektronik

DDR-1035 Berlin, Mainzer Straße 25 Telefon: 5 80 05 21, Telex: 011 2981 011 3055