
Ausgang

* In Entwicklung

	ehnung der Anschlüsse		Bauform: DIP-14, Plast (Bild 3)
1	Anschluß für Widerstand R _{TC}	9	Eingang für Auswahl Q/\bar{Q}
2	Anschluß für Kondensator C_{TC}	10	Betriebsartenauswahl (Mode)
3	Oszillatoreingang, Anschluß	11	nicht belegt
	für Widerstand R_S	12	Eingang zum Programmieren des
4	nicht belegt		Teilerverhältnisses n
5	Auto-RESET	13	Eingang zum Programmieren des
6	Master-RESET		Teilerverhältnisses n
7	Masse	14	Betriebsspannung

Der U 4541 DG ist ein in CMOS-Technologie gefertigter programmierbarer Zeitgeberschaltkreis, der sieh durch eine geringe Stromaufnahme und einfache Programmierbarkeit auszeichnet. Er ist in der Lage, mit einer externen Beschaltung von zwei Widerständen und einem Kondensator eine Taktfrequenz im Bereich von 1 Hz bis mindestens 100 kHz zu erzeugen. Ein dem Oszillator nachgeschalteter Teiler teilt diese Frequenz wahlweise durch 2^8 , 2^{10} , 2^{13} oder 2^{16} , abhängig von der Programmierung der Adresseingänge. Die geteilte Oszillatorfrequenz ist am Ausgang verfügbar. Es besteht die Möglichkeit, den Timer als Teiler des Oszillatortaktes oder als Mono-Flop zu betreiben.

Es sind zwei RESET-Modi möglich: RESET bei Anlegen der Betriebsspannung und durch einen extern an das vorgesehene Pin anzulegenden Impuls. Mit Hilfe einer Ausgangssteuerung kann festgelegt werden, welchen Pegel der Ausgang bei einem RESET-Impuls annimmt. Im Mono-Flop-Betrieb sind damit Einschalt- bzw. Ausschaltverzögerungen realisierbar. Somit gestattet der U 4541 Verzögerungszeiten von 1,5 ms bis 9 Stunden, die durch Kaskadierung mehrerer U 4541 noch vergrößert werden können.

Programmiermöglichkeiten

Pin 12	Pin 13	Zahl der Teilerstufen	2 ⁿ
High	Low	8	256
Low	High	10	1024
Low	Low	13	8192
High	High	16	65536

Zustandstabelle

Pin	Low	High		
5	Auto-RESET arbeitet	kein Auto-RESET möglich		
6	Timer arbeitet	Master-RESET		
9	Ausgang Low nach RESET	Ausgang High nach RESET		
10	Mono-Flop-Betrieb	Teilerbetrieb		

Ausgewählte Kennwerte

Kennwert	Kurz- zeichen	Meßbedingung	min.	typ.	max.	Einheit
Betriebsspannung	U _{DD}		3		15	V
Betriebsspannung zur Ge- währleistung der Auto-	U _{DD}		8,5			V
RESET-Funktion						
Stromaufnahme	I_{DD}	U _{DD} = 5 V			20	μА
(Pin 5 = High)		U _{DD} = 10 V			40	μΑ
		$U_{\mathrm{DD}} = 15 \text{ V}$			80	μA
(Pin 5 = Low)		$U_{DD} = 5 V$			200	μΑ
		$U_{\mathrm{DD}} = 10 \text{ V}$			250	μA
		$U_{\overline{DD}} = 15 \text{ V}$			500	μA
Verzögerungszeiten nach	t _{PLH}	$U_{\mathrm{DD}} = 5 \text{ V}$		3,5		μs
8 Teilerstufen	t _{PHL}	$U_{\mathrm{DD}} = 10 \text{ V}$		1,25		μs
		$U_{\mathrm{DD}} = 15 \text{ V}$		0,90		μs
Verzögerungszeit nach	t _{PLH}	$U_{\mathrm{DD}} = 5 \text{ V}$		6,00		μs
16 Teilerstufen	t _{PHL}	$U_{\mathrm{DD}} = 10 \text{ V}$		3,5		μs
		U _{DD} = 15 V		2,5		μs
Taktfrequenz	f _e	$U_{\mathrm{DD}} = 5 \text{ V}$		5		MHz
	DAGES	$U_{\mathrm{DD}} = 10 \text{ V}$		11		MHz
		$U_{\mathrm{DD}} = 15 \text{ V}$		14		MHz