

ZEISS

Schaltkreis

U 6264 DG

1/89 (14)

vorläufige technische Daten

VEB Forschungszentrum Mikroelektronik Dresden Hersteller: Betrieb des Kombinates VEB Carl Zeiss JENA

Statischer 64-KBit-Schreib-Lese-Speicher mit wahlfreiem Zugriff (sRAM)

Organisation

- 8192 x 8 Bit
- Bidirektionale Ein- und Ausgänge
- Tristate-Ausgengsstufen
- Ein- und Ausgänge TTL-kompatibel

Betriebsspannung U_{CC} = 5 V ± 10%

Datemerhalt

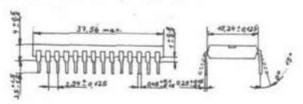
bis U_{CCS} = 2 V (Schlafzustand)

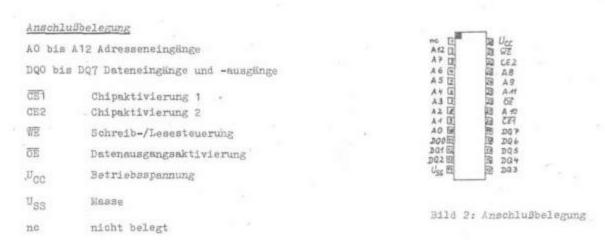
Technologie

CMOS-SGT

Bauform

Gehäuse A1NF nach TGL 26 713/02, Plast




Bild 1; Gehäuse

Masse_

5 4 g

Der Schaltkreis U 6264 DG ist ein statischer Schreib-Lese-Speicher mit wahlfreiem Zugriff in der Organisationsform 8192 Worte zu 8 Bit (8 KByte). Die Schaltkreise sind für den Einsatz in Geräten der Datenverarbeitung, der Automatisierungstechnik und der kommerziellen Elektronik bestimmt. Auf Grund ihrer geringen Leistungsaufnahme sind sie besondere für batteriegepufferte und tragbare Geräte geeignet.

Typ		CE1-Zugriffsze	it Art
U	6264 DG05	55 ns	(Selektionstyp)
U	6264 DG07	70 ns	(Grundtyp)
U	6264 DG10	100 nm	(Anfalltyp)

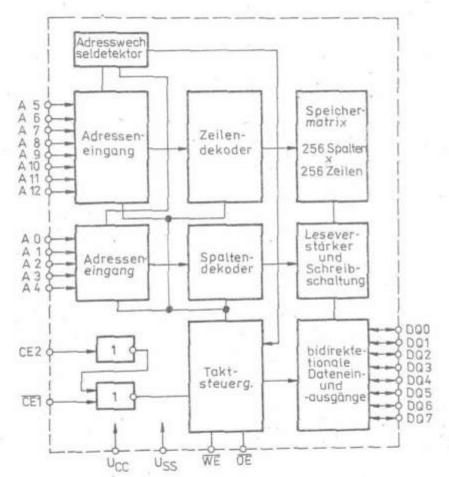


Bild 3: Blockschaltbild

Funktionsbeschreibung

Der Schaltkreis hat die Organisationsform 8192 Worte zu 8 Bit. Er besitzt Redundanz, die keinen Einfluß auf die elektrischen Kennwerte hat.

Der Schaltkreis wird mit der H/L-Flanke von CEI bzw. der L/H-Flanke von CE2 aktiviert. Gleichzeitig werden die Adreß- und Steuereingänge geöffnet. Je nach Information an WE und CE sind die Dateneingänge oder -ausgänge aktiv. Im ausgewählten Zustand des Schaltkreises (CEI = L und CE2 = H) löst jede Adressenänderung einen neuen Lese- oder Schreibzyklus aus.

Beim Lesen (CET = L, CE2 = H, WE = H) gelangt die Information aus den Zellen bis zu den Datenausgangsstufen (internes Lesen). Mit der H/L-Flanke von ÖE werden die Datenausgänge aktiviert und die Information liegt niederohmig an den Datenausgängen DQO bis DQ7 an. Durch dieses Signal kann die Zugriffszeit verkürzt werden und der externe Datenbus steht nach der Aktivierung des Schaltkreises zur Datenübertragung noch zur Verfügung.

Heim Schreiben (CET = L, CE2 = H, WE = L) wird die an den Dateneingängen DQO bis DQ7 anliegende Information in die adressierten 8 Zellen geschrieben. Der Schreibzyklus wird mit der L/H-Flanke von CET oder der H/L-Flanke von CE2 oder der L/H-Flanke von WE beendet.

Für alle Typen wird der Detenerhalt bis $U_{CC}=2$ V (Schlafzustand) mit geringem Schlafstrom garantiert. Im Schlafzustand muß der Schaltkreis durch $\overline{CE1}=H$ oder CE2=L inaktiviert werden. Nach Beendigung des Schlafzustandes ($U_{CC}>4.5$ V) ist für die internen Vorladungen die Einhaltung der Zeit t_{AVAX} notwendig.

Die einzelnen Betriebsarten seigt die folgende Tabelle.

Betriebsart	Œ1	CES	WE	ŌĒ	Datenanschlüsse
nicht ausgewählt		I.	*		
	H				hochohmig .
Internes Lesen	L	н	Н	Н	hochohmig
Lesen	L	Н	н	L	Datenausglinge niederohmig
Schreiben	L	Н	L	#	Datenausgänge hochohmig

= Zustand beliebig

Zeitdiagramme (siehe Bild 4, Bild 5, Bild 6, Bild 7)

Sig	nal	e	Flanken
D	-	Dateneingang	H - Ubergang nach H
Q	-	Datenausgang	L - Ubergang mach L
01	-	CE1	V - Übergang in gültigen Zustand
02	**	CE2	X - Ubergang in ungültigen Zustand oder
0	-	OE .	beliebigen Zustand
W	_	WE	Z - Übergang in hochohmigen Zustend

Flankenenstiegs- und Flankenabfallzeit $t_{\rm TLH}$ = $t_{\rm THL}$ < 5 ns

Für die Diagramme Schreibzyklus 1, 2 und 3 gilt folgende Anmerkung:

Wenn WE, CE, CE1 und CE2 während dieser Periode im Lesemodus sind, befinden sich die Datenausgunge im niederohmigen Zustend, und es ist nicht zulässig, inverse Eingangsdaten anzulegen.

Grenzwerte

Alle Spannungen sind auf $U_{SS} \approx 0 \text{ V (Masse)}$ zu beziehen.

	Kurszeichen	min.	max.	Einheit
Betriebsspannung	Ucc	-0,3	7.0	V
Spannung an allen ein- fachen und bidirektiona- len Eingängen	ū	-0,3	U _{CC} + 0,5	٧
Gesamtverlust- leistung	Ptot	-	, 1	W

Betriebsbedingungen

Alle Spannungen sind auf $U_{SS}=0$ V (Masse) zu beziehen. Die Behandlungsvorschriften für MOS-Schaltkreise sind einzuhalten.

Ein Kurzschluß zwischen aktiven Ausgängen und Masse oder Betriebsspannung ist nicht zulässig.

Allgemeine Betriebsbedingungen

	Kurzzeichen	min.	typ.	max.	Einheit
Betriebsspannung	Ucc	4.5	5,0	5,5	V
Betriebsspannung im Schlafzustand	Uccs	5,0	-	-	v
L-Eingangsspannung	UIL	-0,3	-	0,8 1)	V
H-Eingangsspannung	U _{IH}	2,2	-	U _{CC} + 0,3	V
Umgebungstemperatur	A.B.	-25	-	85	°C
Verzögerung Adressen- wechsel/Ausgang aktiv	t _{AVQX}	-	-	10	ne
Verzögerung CE1 Ausgang aktiv	tcilox	-	-	10	ns
Verzögerung CE2 Ausgang aktiv	t _{C2HQX}	5		- 10	ns
Verzögerung ÖB Ausgang aktiv	toLQX	*	200	5	ns
Verzögerung WE Ausgang aktiv	twhqx	-	-	5	ns

Typabhängige Betriebsbe	Kurzzeichen	DG05	min. U 6264 DG07	DG10	Einheit
Zykluszeit	t _{AVAX}	55	70	100	ns
CE1-L-Impulsdauer	[†] C1LC1H	50	65	90	ns
CE2-H-Impulsdauer	tCSHCST.	50	65	90	ns
Adressenvorhaltezeit gegenüber Schreibende	tAVWH tAVC1H tAVC2L	50	65	90	ns
Datenvorhaltezeit gegenüber Schreibende	tDVC1H tDVC1H	} 30	35	40	ns
Datenhaltezeit nach Schreibende	twhdz tcihdz tcczdz	} 。	.0	0	ns
WE-L-Impulsdauer	t _{WLWH}	40	50	70	ns
Adressenvorhaltezeit gegenüber Schreib- anfang	tavc1L tavc2H				
Erholzeit nach Schreib- zyklus	t _{WHAX} t _{C1HAX} t _{C2LAX}	} 0	0	0	ns
Zeit von Schaltkreis- aktivierung bis Schlafzustand	tg1HUL tg2LUL				2)
Erholzeit nach Schlefzustend	tunc1L tunc2H	}	t_{AVAX}		3)
	Kurzzeichen	DQ05	max. U 6264 DG07	DG10	Einheit
Adressenzugriffszeit	tAVQV	1			
CE1-Zugriffszeit	*C1LQV	55	70	100	ns4)
E2-Zugriffszeit .	^t c2HQV	J			
Oynamische Strom- aufnahme	Icco		120		mA
DE-Zugriffszeit Jcc = 5,0 V	toLQV	35	40	50	ns
Verzögerung CE2 nach L, Ausgang hochohmig	tc2LQZ	20	25	35	ns

Wegen der höchsten Priorität der CE-Eingänge werden die Abschaltzeiten $t_{\rm C1HQZ},~t_{\rm WLQZ}~{\rm und}~t_{\rm OHQZ}~{\rm der}~{\rm Zeit}~t_{\rm C2LQZ}$ gleichgesetzt.

¹⁾ Bine einmalige Unterschreitung bis -2 V für die Dauer von 10 ns innerhalb einer Zykluszeit ist zulässig.
2) UL - Absinken der Betriebsspannung

³⁾UH - Ansteigen der Betriebsspannung

^{4)&}lt;sub>UCC</sub> = 4,5 V

Kenngrößen	Eurzzeichen	min.	max.	Einheit
L-Ausgangsspannung U _{CC} = 4,5 V	or a	-	0,4	ν -
I _O = 3,2 mA				
H-Ausgangsspannung U _{CC} = 4,5 V	U _{OH}	2,4	-	v
I _O = -1,0 mA				
Stromaufnahme im Ruhezustand	ICCR	-	100	/ ^{uA}
U _{CC} = 5,5 V				
Stromaufnahme im Schlafzustand	Iccs	-	10	/WA
$U_{OC} = 3 \text{ V}$				
Eingangsleckstrom einfacher Eingänge	ILI	-2	2	\uA
$U_{CC} = 5.5 \text{ V}$				
Eingangsleckstrom bidirektionaler Eingänge	ILI	-10	10	/uA
U _{CC} = 5,5 V				
$U_{I} = 0 V$				
U _O = 0 V oder 5,5 V				
Eingangskapazität	cI	-	10	pF

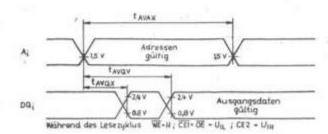
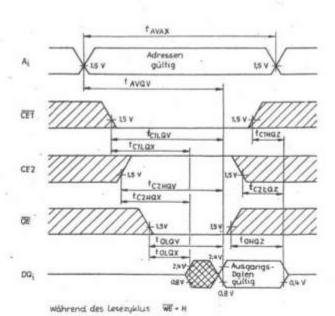
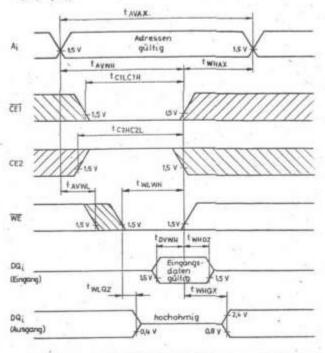
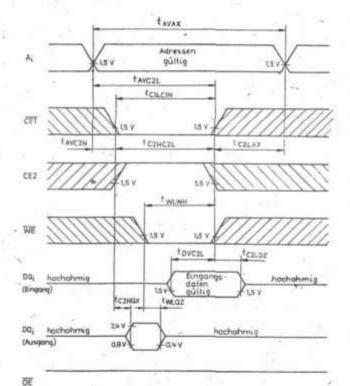


Bild 4: Lesezyklus 1


Bild 5: Lesezyklus 2

Anm.

Wenn WE, CE, CE1 und CE2 während dieser Periode im Lesemodus sind, befinden sich die Datenausgenge im niederohmigen Zustand, und es ist nicht zulässig, die digital entgegengesetzten Eingangsdaten anzulegen.

Bild 6: Schreibzyklus 1 (WE gesteuert)

All Adressen galtig LSV

tavcil tavcih tcihas

tavcil tcihcih

tcihcih

tczhczi

tczhczi

tczhczi

tczhczi

tczhczi

tcihoz

s. Anm. Bild 6

76

Bild 7: Schreibzyklus 2 (CE1 gesteuert)

s. Anm. Bild 6

Bild 8: Schreibzyklus 3 (CE2 gesteuert)

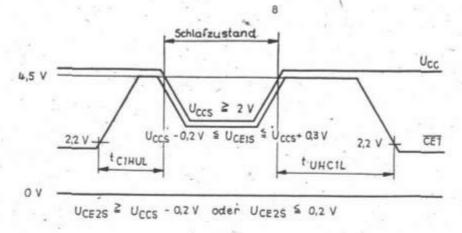


Bild 9: Schlafzustand 1 (CE1 gesteuert)

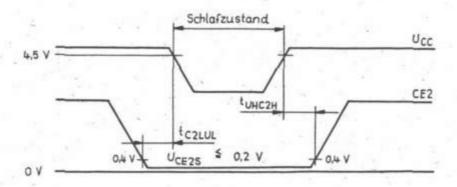


Bild 10: Schlafzustand 2 (CE2 gesteuert)

Die vorliegenden Datenblätter dienen ausschließlich der Information! Es können daraus keine Liefermöglichkeiten oder Produktionsverbindlichkeiten abgeleitet werden. Änderungen im Sinne des technischen Fortschritts sind vorbehalten.

Herausgeber.

veb applikationszantrum elektronik berlin im veb kombinet mikroelektronik

Mainzer Straße 25 Berlin, 1035

Telefon: 5 80 05 21, Telex: 011 2981 011 3055