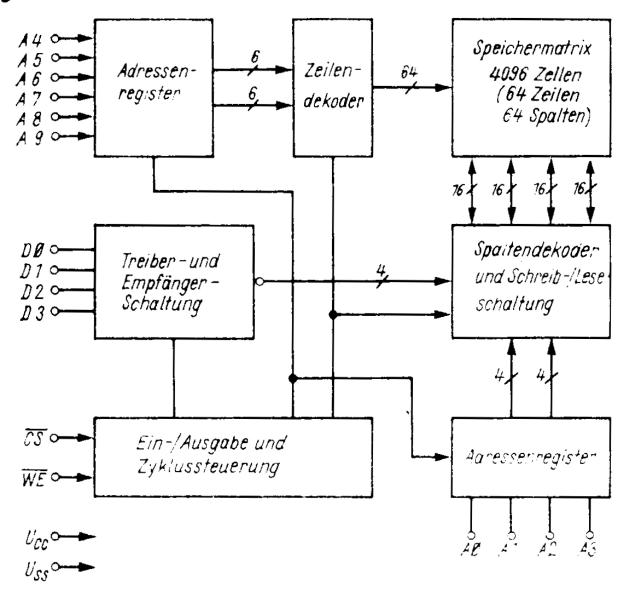

U 6548 DC 20 · U 6548 DC 35 Vorläufige technische Daten

 \oplus

Schneller Statischer Schreib-/Lese-Speicher mit wahlfreiem Zugriff (SRAM)

- Speicherkapazität 4096 Bit
- Organisation 1 K × 4 Bit
- Zugriffszeit/Zykluszeit 20 ns/30 ns (U 6548 DC 20) Grundtyp 35 ns/50 ns (U 6548 DC 35) Anfalltyp
- Betriebsspannung 5 V \pm 10 $^{\circ}/_{0}$
- geringer Ruhestrom
- gemeinsame (bidirektionale) Datenein-/-ausgänge
- Tristate-Ausgangsstufen
- Ein- und Ausgänge für den Typ U 6548 DC 35 TTL-kompatibel
- Adressenzwischenspeicherung
- Datenerhalt bis Ucc = 2 V
- CMOS Silizium Gate Technologie
- pinkompatibel zum U 224

Bauform 7


Anschlußbelegung und Schaltungskurzzeichen

A 0	A 9	Adresseneingänge
CS		Chipauswahl
WE		Lese-/Schreibsteuerung
Γ	Γ	Data and a 1

D 0 . . . D 3 Datenein-/-ausgänge
UCC Betriebsspannung

U_{SS} Masse

Blockschaltung

Grenzwerte alle Spannungen sind auf USS = 0 V bezogen

		mi n	max	
Spannungen an allen Pins	\cup_{SR}	0,5	7	V
Verlustl eistun g	P _v		0,5	W
Lagertemperatur	∂sta	5 5	125	°C

Statische Betriebsbedingungen		DC 20			DC 35		
		mi n	max	min	m ax		
Betriebsspannung	Ucc	4,5	5,5	4,5	5,5 V		
Schlafspannung	UCCS	2		2	V		
L-Eingangsspannung ¹)	UIL	-0 ,3	0,8	0,3	0, 8 V		
H-Eingangsspannung	UIH	UCC-2	UCC 4 0,5	2,2	$U_{CC} + 0.5 \text{ V}$		
Umgebungstemperatur	∂ _a	0	70	0	70 °C		

¹⁾ Eine einmalige Unterschreitung bis –2 V für die Dauer von 10 ns innerhalb der Zykluszeit ist zulässig

Dynamische Betriebsbedingungen		U 65 48 DC 20	U 6548 DC 35	
CS-Impulsdauer				
negativ	TCLCH	20	35	ns
positiv	^T CHCL	10	15	ns
Adreßvorhaltezeit	TAVCL	5	10	ns
Adreßhaltezeit	TCLAX	5	10	ns
WE-				
Impulsdauer	^T WLWH	20	35	ns
Impulsvorhaltezeit	TWLCH	20	35	ns
Impulshaltezeit	TCLWH	20	35	ns
Datenvorhaltezeit	TDVWH	20	35	ns
Datenhalt ezeit	TWHDZ	0	0	ns
Schreib-Lese-Abstand	TWHCL	0	0	ns
Lese-Schreib-Abstand	TDVWL	0	0	ns
WE-Datenverzögerungszeit	TWLDV	0	0	ns
WE-Vorhalt	TWLCL	0	0	ns
WE-Nachlauf	TCHWH	0	0	ns
Zykluszeit	TCLCL	30	50	ns

			U 654 8			
Kennwerte		DC 20		DC 35		
		min	max	min	max	K
Stromaufnahme	¹ cco		20		20	mA²)
Ruhestrom	CCR		50		50	μA^3)
Schlafstrom	Iccs		10		10	μ Α 4)
Ei ngangsleckst rom	ill		1		1	μA^3)
L- Ausgangsspa nnung	UOL		0,4		0,	4 V ⁵)
H-Ausgangsspannung	UOH	2,4		2,4		V ⁶)
CS-Zugriffszeit	TCLDV		20		35	ns ⁷)
Verzögerungszeit						
CS Ausgang hochohmig	TCHQZ	0	10	0	15	ns ⁸)
WE -> Ausgang hochohmig	TWLQZ	0	10	0	15	ns ⁸)
Eingangskapazität	Cı		5		5	pF³)

^{?)} $U_{CC} = 5.0 \text{ V}$, f = 10 MHz, für \overline{CS} : $U_{IL} = U_{SS}$, $U_{IH} = U_{CC}$

⁾ U_{CC} = 5,5 V, U_{IL} = U_{SS} , U_{IH} = U_{CC}

⁴⁾ UCC == 3 V, UIL == USS, UIH == UCC

 $^{^{\}circ}$) U_{CC} = 4.5 V, I_{OL} == 8 mA

¹⁾ $U_{CC} = 4.5 \text{ V}$, $I_{OH} = -4 \text{ mA}$

^{?)} $U_{CC} = 4.5 \, V$, $U_{IL} = 0.8 \, V$

 $^{^{5}}$) U_{CC} = 5 V, U_{IL} =U_{SS}, U_{IH} = U_{CC}

^{°)} $U_{CC} - U_{SS} = 0$, f = 1 MHz