

Information

CMOS-Logikbaureihe U 74 HCT 00 DK

u	74	HCT	00	DK	4 NAND-Gatter mit je 2 Eingängen
u	74	HCT	02	DK	4 NDR-Gatter mit je 2 Eingängen
U	74	HCT	04	DK	6 Inverter
U	74	HCT	74	DK	2 D-Flip-Flop
U	74	HET	86	DK	4 Exklusiv-DR-Gatter mit je 2 Eingängen
U	74	HCT	138	DK	1 aus 8 Dekoder/Demultiplexer
U	74	HCT	242	DK	4bit Bus/Transceiver, invertierend
U	74	HCT	243	DK	Abit Bus Transceiver, nicht invertierend
u	74	HET	373	DK	Bbit Transparentlatch mit tristate-Ausgängen
U	74	HCT	374	DK	8bit D-Flip-Flop mit tristate-Ausgängen
U	74	HCT	533	DK	Bbit Transparentlatch mit invertierten tristate-Ausgängen Teud
U	74	HCT	534	DK	Bbit D-Flip-Flop mit invertier f en tristate-Ausgängen $\int e^{i\phi} d\phi$

CMOS-Schaltkreise der Logikbaureihe U 74 HCT 00 DK des VEB Arkroeikhou. K "Karl Marx" Erfurt-Stammbetrieb sind durch folgende Eigenschaften gekennzelchnet:

- Kompatibilität zur internationalen CMOS-Baureihe 74 HCT 00
- Anschluß- und Funktionskompatibilität zur internationalen LS-TTL-Baureihe 74 LS 00
- Schaltgeschwindigkeit ähnlich der internationalen LS-TTL-Baureihe
- Im Frequenzbereich bis etwa 5 MHz wesentlich geringere Leistungsaufnahme der Schaltkreise gegenüber Schaltkreisen der LS-TTL-Baureihe, damit erhebliche Senkung des Aufwandes für die Realisierung von Stromversorgungseinheiten. Die geringere Leistungsaufnahme bildet die Voraussetzung für die Realisierung tragbarer batteriegespeister, komfortabler Geräte und ermöglicht eine höhere Packungsdichte auf Leiterkarten und damit ein geringeres Gehäusevolumen.
- Die hohe Störsicherheit ermöglicht die Realisierung störsicherer Schaltungskonzepte und die Vergrößerung der Anwendungsbreite von Logikschaltkreisen.
- Die Übereinstimmung in Anschlußfolge und Funktion sowie eine ähnliche Schaltgeschwindigkeit ermöglichen den Austausch mit Schaltkreisen der LS-TTL-Baureihe 74 LS 00.
- Dual-in-line-Plastgehäuse
- Betriebstemperaturbereich: 3 = -40 ... 85 °C

Internationale Vergleichstypen

U	74	HCT	0.0	DK	PC	74	HCT	0.0	p	(Valvo)
U	74	HCT	02	DK	PE	74	HCT	02	P	(Valvo)
U	74	HET	0.4	DK	PC	74	HET	04	P	(Valvo)
U	74	HCT	74	DK	PC	74	HCT	74	p	(Valvo)
U	74	HCT	86	DK	PC	74	HCT	86	p	(Valvo)
U	74	HCT	138	DK	PC	7.4	HCT	138	P	(Valvo)
U	74	HET	242	DK	PC	74	HCT	242	P	(Valvo)
U	74	HCT	243	DK	PC	74	HCT	243	p	(Valvo)
U	74	HCT	373	DK	PC	74	HCT	373	P	(Valvo)
U	74	HET	374	DK	PC	74	HCT	374	p.	(Valvo)
U	74	HCT	533	DK	PC	74	HCT	533	P	(Valvo)
U	7.4	HOT	534	DK	PE	74	HCT	534	P	(Valvo)

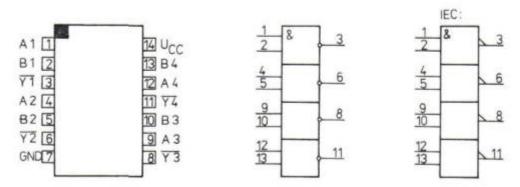


Bild 1: Anschlußbelegung und Schaltzeichen U 74 HCT 00 DK (Bauform: 1)

Bezeichnung der Anschlüsse:

1	A 1	Eingang	8	Y 3	Ausgang
2	B 1	Eingang	9	A 3	Eingang
3	Y 1	Ausgang	10	B 3	Eingang
4	A 2	Eingang	11	Y 4	Ausgang
5	B 2	Eingang	12	A 4	Eingang
6	Y 2	Ausgang	13	B 4	Eingang
7	GND	Bezugspotential	1.4	UCC	Betriebsspannung

Wahrheitstabelle:

A n	B n	Υn
L	L	н
H	L	н
L	н	н
Н	н	E

(n = 1 ... 4)

Grenzwerte

Kennwert	Kurzzeichen		min.	max,	Einheit
Betriebsspannung	UCC		OND - 0,5	GND + 7	v
Elngangsspannung	UT		GNO - 0,5	U _{CC} + 0,5	V
Ausgangsspannung	Un		GND - 0,5	U _{CC} + 0,5	V
Eingangsstrom	IT			20	mΑ
Ausgangsstrom	I			25	mA
Betriebsstrom	I _{CC} ; I _{GND}			50	mA
Gesamtverlustleistung	Ptot	J _a = -40 70 °C		350	miel
(DIP-Gehäuse)	100	ਹੈ° = 85 °C		250	πW
Lagerungstemperaturbereich	Pstg	ond - Schoolshill	-55	125	*C

Kennwert	Kurzzeichen	min.	max.	Einheit
Betriebsspannung	UCC	4,5	5,5	v
Eingangsspannung	Uy	0	u _{cc}	V
Eingangsspannung H	UTH	2		. v
Eingangsspannung L	UTI		0,8	V
Betriebstemperaturbereich	J.	-40	85	*C
Anstiegs- und Abfallzeit der Eingangssignale	thi the		500	ns

Statische Kennwerte (ϑ_{8}^{\prime} = -40 ,.. 85 °C)

Kennwert	Kurz- zeichen	Meßbedingungen	min.	max.	Einhei
Eingangsreststrom	I _{IH}	U _{CC} = U _{TH} = 5,5 V		1	μА
	-I _{IL}	U _{CC} = 5,5 V; U _{TL} = 0 V		1	µA V
Ausgangsspannung H	n ^{DH}	$U_{CC} = 4,5 \text{ V; } U_{IL} = 0.8 \text{ V;}$ $U_{IH} = 2 \text{ V; } -I_{OH} = 20 \text{ µA}$	4,4		
		U _{CC} = 4,5 V; U _{IL} = 0,8 V; U _{IH} = 2 V; -I _{OH} = 4 mA	3,84		V
Ausgangsspannung L	n ^{Dr}	$u_{CC} = 4,5 \text{ V}; \ u_{IL} = 0,8 \text{ V}; \ u_{IH} = 2 \text{ V}; \ I_{OL} = 20 \text{ pA}$		0,1	V
		$U_{CC} = 4.5 \text{ V}; U_{IL} = 0.8 \text{ V};$ $U_{TH} = 2 \text{ V}; I_{OL} = 4 \text{ mA}$		0,33	v
statische Stromaufnahme	ICC	$U_{CC} = U_{IH} = 5,5 \text{ V}; U_{IL} = 0 \text{ V};$ $I_{O} = 0 \text{ mA}$		20	μΑ

$$(U_{CC} = 4,5 \text{ V}; U_{IH} = 3 \text{ V}; U_{IL} = 0 \text{ V}; t_{HL} = t_{LH} = 6 \text{ ns}, C_{L} = 50 \text{ pF}; 3\%_{R} = -40 \dots 85 \text{ °C})$$

Kennwert	Kurzzeichen	Meßbedingungen	min.	max.	Einheit
Verzögerungszeit Anstiegs- und Abfallzeit	t _{PLH} ; t _{PHL}	Sand specifies		25 19	ns ns
Eingangskapazität	c _I	∂ _B = 25 °C		10	pF

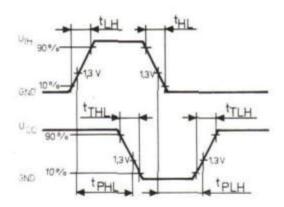


Bild 2: Impulsdiagramm U 74 HCT 00 DK

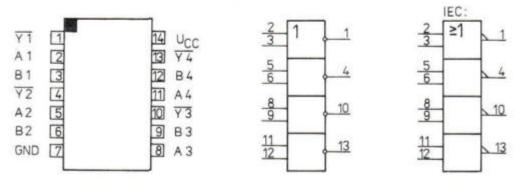


Bild 3: Anschlußbelegung und Schaltzeichen U 74 HCT 02 DK (Bauform: 1)

Bezeichnung der Anschlüsse:

1	YI	Ausgang	8	A 3	Eingang
2	A 1	Eingang	9	B 3	Eingang
3	B 1	Eingang	10	Y 3	Ausgang
4	Y 2	Ausgang	11	A 4	Eingang
5	A 2	Eingang	12	B 4	Eingang
6	B 2	Eingang	13	Y 4	Ausgang
7	GND	Bezugspotential	14	UCC	Betriebsspannung

Wahrheitstabelle:

A n	B n	Y n
L	L	н
H	L	L
L	Н	L
L	L	L

Grenzwerte

Kennwert	Kurzzeichen		min.	max.	Einheit
Betriebsspannung	ucc		GNO - 0,5	GND + 7	v
Eingangsspannung	Ut		GND - 0,5	U _{CC} + 0,5	V
Ausgangsspannung	u _n		GND - 0,5	U _{CC} + 0,5	V
Eingangsstrom	I ₁			20	mA
Ausgangsstrom	I ₀			25	mA
Betriebsstrom	I _{CC} ; I _{GND}			50	mA
Gesamtverlustleistung	Ptot	5 _n = -40 70 °C		350	mW
(DIP-Gehäuse)	LUC	∜ ₈ = 85 °C		250	mid
Lagerungstemperaturbereich	Jstg		-55	125	*C

Kennwert	Kurzzeichen	min.	max.	Einheit
Betriebsspannung	ucc	4,5	5,5	v
Eingangsspannung	UT	0	u _{CC}	V
Eingangsspannung H	UIH	2		V
Eingangsspannung L	The second secon		0,8	V
Betriebstemperaturbereich	oIL o	-40	85	*G
Anstiegs- und Abfallzeit der Eingangssignale	t _{LH} ; t _{HL}		500	ns

Statische Kennwerte ($\mathcal{T}_{\mathbf{B}}$ = -40 ... 85 °C)

Kennwert	Kurz- zeichen	Meßbedingungen	min.	max.	Einheit
Eingangsreststrom	I _{IH}	U _{DC} = U _{TH} = 5,5 V		1	μА
	-I _{IL}	U _{CC} = 5,5 V; U _{TL} = 0 V		1	μА
Ausgangsspannung H	U _{ОН}	$U_{CC} = 4,5 \text{ V}; U_{IL} = 0.8 \text{ V};$ $U_{TH} = 2 \text{ V}; -\overline{I}_{OH} = 20 \text{ µA}$	4,4		V
		$U_{CC} = 4.5 \text{ V}; \ U_{IL} = 0.8 \text{ V}; \ U_{TH} = 2 \text{ V}; \ -I_{OH} = 4 \text{ mA}$	3,84		V
Ausgangsspannung L	UDL	$U_{CC} = 4,5 \text{ V; } U_{IL} = 0,8 \text{ V;}$ $U_{IH} = 2 \text{ V; } I_{CH} = 20 \mu\text{A}$		0,1	ν
		$U_{CC} = 4.5 \text{ V}; U_{IL} = 0.8 \text{ V};$ $U_{TH} = 2 \text{ V}; I_{CI} = 4 \text{ mA}$		0,33	٧
statische Stromaufnahme	ICC	$U_{CC} = U_{IH} = 5,5 \text{ V}; U_{IL} = 0 \text{ V};$ $I_{\Omega} = 0 \text{ mA}$		20	μА

$$(U_{CC} = 4,5 \text{ V}; U_{IH} = 3 \text{ V}; U_{IL} = 0 \text{ V}; t_{HL} = t_{LH} = 6 \text{ ns}; C_{L} = 50 \text{ pF}; J_a = -40 ... 85 °C)$$

Kennwert	Kurzzeichen	Meßbedingungen	min.	max.	Einheit
Verzögerungszeit Anstiegs- und Abfallzeit	t _{PLH} ; t _{PHL}			28 19	ns ns
Eingangskapazität	CI INC	√g = 25 °C		10	pF

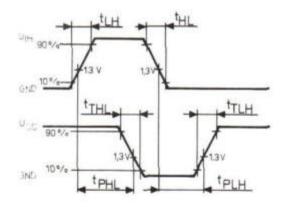
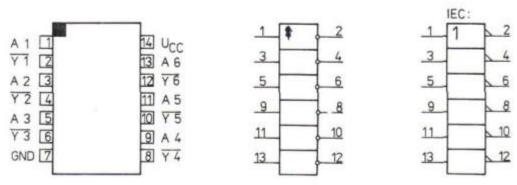



Bild 4: Impulsdiagramm U 74 HCT 92 DK

8ild 5: Anschlußbelegung und Schaltzeichen U 74 HCT 04 DK (Bauform: 1)

Bezeichnung der Anschlüsse: Eingang Y 4 A 1 8 Ausgang YI Ausgang 9 A 4 Eingang 10 A 2 Y 5 Eingang Ausgang Y 2 4 Ausgang 11 A 5 Eingang 5 A 3 Eingang 12 Y 6 Ausgang Y 3 6 A 6 Ausgang 13 Eingang

14

UCC

Bezugspotential

Wahrheitstabelle:

A n	Υn
н	L
L.	Н

Grenzwerte

GNO

Kennwert	Kurzzeichen		min.	max.	Einheit
Betriebsspannung	UCC		GNO - 0,5	GND + 7	v
Eingangsspannung	UT		GND - 0,5	U _{CC} + 0,5	V
Ausgangsspannung	u _n		GND - 0,5	U _{CC} + 0,5	V
Eingangsstrom	I ₁			20	mA
Ausgangsstrom	I ₀			25	mA
Betriebsstrom	I _{CC} ; I _{GND}			50	mA
Gesamtverlustleistung	Ptot	0 = −40 70 °C		350	≡W
(DIP-Gehäuse)	100	∂ _a = 85 °C		250	mW
Lagerungstemperaturbereich	₹stg		-55	125	*C

Betriebsspannung

Kennwert	Kurzzeichen	min.	max.	Einheit
Betriebsspannung	UCC	4,5	5,5	V
Eingangsspannung	UT	0	u _{cc}	V
Eingangsspannung H	U _{IH}	2		V
Eingangsspannung L	UIL		0,8	V
Betriebstemperaturbereich	9°a	-40	85	*c
Anstiegs- und Abfallzeit der Eingangssignale	t _{LH} ; t _{HL}		500	ns

Statische Kennwerte ($\vartheta_{\rm a}$ = -40 ... 85 °C)

Kennwert	Kurz- zeichen	Meßbedingungen	min.	max.	Einhei
Eingangsreststrom	1714	U _{CC} = U _{IH} = 5,5 V		1	μА
	-171	U _{CC} = 5,5 V; U _{Ti} = 0 V	1 1	1	12A
Ausgangsspannung H	1 IH	$U_{CC} = 4,5 \text{ V; } U_{TL} = 0,8 \text{ V; } U_{TH} = 2 \text{ V; } -I_{OH} = 20 \text{ pA}$	4,4		μA V
		$U_{CC} = 4,5 \text{ V; } U_{TL} = 0.8 \text{ V;}$ $U_{TH} = 2 \text{ V; } -I_{OH} = 4 \text{ mA}$	3,84		V
Ausgangsspannung L	u _{OL}	U _{CC} = 4,5 V; U _{IL} = 0,8 V; U _{TH} = 2 V; I _{OL} = 20 µA		0,1	V
		$U_{CC} = 4,5 \text{ V}; \ U_{TL} = 0,8 \text{ V}; \ U_{TH} = 2 \text{ V}; \ I_{OL} = 4 \text{ mA}$		0,33	V
statische Stromaufnahme	ICC	$U_{CC} = U_{IH} = 5,5 \text{ V; } U_{IL} = 0 \text{ V;}$ $I_{O} = 0 \text{ mA}$		20	μА

$$(U_{CC} = 4,5 \text{ V}; U_{IH} = 3 \text{ V}; U_{IL} = 0 \text{ V}; t_{HL} = t_{LH} = 6 \text{ ns}; C_{L} = 50 \text{ pF}; \frac{5}{2} = -40 \dots 85 \text{ C})$$

Kennwert	Kurzzeichen	Meßbedingungen	min.	max.	Einheit
Anstiegs- und Abfallzeit	t _{TLH} ; t _{THL}			25	ns
Verzögerungszeit	t _{PLH} ; t _{PHL}			19	ns
Eingangskapazität	C _I	ੴa = 25 ℃		10	pF

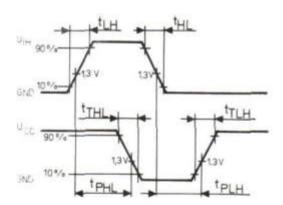


Bild 6: Impulsdiagramm U 74 HCT D4 DK

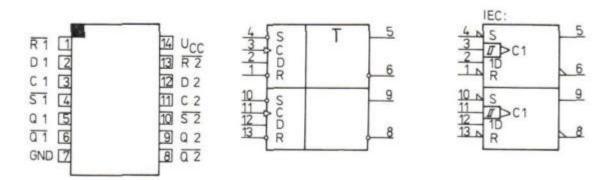


Bild 7: Anschlußbelegung und Schaltzeichen U 74 HCT 74 DK (Bauform: 1)

Bez	eichnun	g der Anschlüsse:			
1	RI	Rücksetzeingang	8	Q 2	Ausgang
2	0 1	Dateneingang	9	Q 2	Ausgang
3	C 1	Takteingang	10	5 2	Setzeingang
4	5 1	Setzeingang	11	C 2	Takteingang
5	Q 1	Ausgang	12	D 2	Dateneingang
6	Q 1	Ausgang	13	R 2	Rücksetzeingang
7	GND	Bezugspotential	14	ucc	Betriebsspannung

cetrenaka

Der U 74 HCT 74 DK enthält zwei D-Flip-Flops mit getrennter Taktung und Setz- und Rücksetzeingängen. Die am Dateneingang D anliegende Information wird mit der L/H-Flanke des Taktes in das Flip-Flop übernommen und erscheint an den Ausgängen Q und Q. Mit dem Setz- bzw. Rücksetzeingang läßt sich das Flip-Flop setzen (\overline{S} = L → Q = H) bzw. rücksetzen (\overline{R} = L → \overline{Q} = H).

Wahrheitstabelle: (sully for gives Flips-Flop)

Eingänge				Ausgäng	e
С	D	5	R	0 _t	Ūt.
L/H-Flanke	н	н	н	Н	1.
L/H-Flanke	L	Н	H	L	H
×	×	L	L	Hall	H ~)
×	×	11	L	L	Н
×	×	L	Н	H	L
L	×	н	Н	Q+-1	Q+-1

1) Quetand der Rayinge undefinier, wenn 5 und R gleich zeitig auf H-Potertial geschaltet werden

Grenzwerte

Kenrwert	Kurzzeichen		min.	max.	Einheit
Betriebsspannung	U _{CC}		GND - 0,5	GND + 7	v
Eingangsspannung	UT		GND - 0,5	U _{CC} + 0,5	V
Ausgangsspannung	Un		GND - 0,5	U _{CC} + 0,5	V
Eingangsstrom	IIT			20	mA.
Ausgangsstrom	I ₀			25	mA
Betriebsstrom	I _{CC} ; I _{GND}			50	mA
Gesamtverlustleistung	Ptot	T = -40 70 °C		350	mW
(DIP-Gehäuse)		₹ = 85 °C		250	mid
Lagerungstemperaturbereich	9 _{stg}	d	-55	125	*C

Betriebsbedingungen (GND = 0 V)

Kennwert	Kurzzeichen	min.	max.	Einheit
Betriebsspannung	u _{cc}	4,5	5,5	v
Eingangsspannung	uı	0	u _{cc}	V
Eingangsspannung H	UIH	2		V
Eingangsspannung L	UTI		0,8	V
Betriebstemperaturbereich	U _{IL}	-40	85	*C
Anstiegs- und Abfallzeit der Eingangssignale	tun; the		500	ns
Flanke des Taktes	HOST TOWNERENS TREME	8		ns
Setzzeit Daten zur L/H–Flanke des Taktes	t _{SO}	25		ns
Haltezeit Daten nach L/H-Flanke des Taktes	^t H0	3		ns
Taktimpulsbreite	t _{DL} ; t _{DH}	25		ns
Impulsbreite 5	t _{SL} ; t _{SH}	25		ns
Impulsbreite R	t _{RL} ; t _{RH}	25		ns
Taktfrequenz	f _C	1,100	20	MHz

Statische Kennwerte ($\vartheta_{\mathrm{B}}^{r}$ = -40 ... 85 °C)

Kennwert	Kurz- zeichen	Meßbedingungen	min.	max.	Einheit
Eingangsreststrom	I _{IH}	U _{CC} = U _{TH} = 5,5 V		1	μА
	-I _{IL}	U _{CC} = 5,5 V; U _{T1} = 0 V		1	μА
Ausgangsspannung H	U _{DH}	$U_{CC} = 4,5 \text{ V; } U_{TL} = 0,8 \text{ V;}$ $U_{TH} = 2 \text{ V; } -I_{DH} = 20 \text{ µA}$	4,4		V
		$U_{CC} = 4,5 \text{ V; } U_{IL} = 0,8 \text{ V;}$ $U_{IH} = 2 \text{ V; } -I_{OH} = 4 \text{ mA}$	3,84		٧
Ausgangsspannung L	u _{OL}	$U_{CC} = 4,5 \text{ V; } U_{IL} = 0,8 \text{ V;}$ $U_{TH} = 2 \text{ V; } I_{OL} = 20 \mu\text{A}$		0,1	V
		U _{CC} = 4,5 V; U _{IL} = 0,8 V;		0,33	V
statische Stromaufnahme	1 _{CC}	$U_{IH} = 2 \text{ V; } I_{OL} = 4 \text{ mA}$ $U_{CC} = U_{IH} = 5,5 \text{ V; } U_{IL} = 0 \text{ V;}$ $I_{O} = 0 \text{ mA}$		40	μΑ

Dynamische Kennwerte

 $(U_{CC} = 4,5 \text{ V}; U_{IH} = 3 \text{ V}; U_{IL} = 0 \text{ V}; t_{HL} = t_{LH} = 6 \text{ ns}; C_{L} = 50 \text{ pF}; \frac{37}{8} = -40 \dots 85 \text{ °C})$

Kennwert	Kurzzeichen	Meßbedingungen	min.	max.	Einheit
Verzügerungszeit C _n → Q _n , Q	*PCLH* *PCHL			44	пѕ
Verzögerungszeit \overline{S}_n , $\overline{R}_n \rightarrow \overline{Q}_n$, \overline{Q}_n	t _{PSLH} ; t _{PSHL} ; t _{PRLH} ; t _{PRHL}			50	ns
Anstiegs- und Abfallzeit	tTLH; tTHL			19	ns
Eingangskapazität	CT	J _a = 25 °C		10	pF

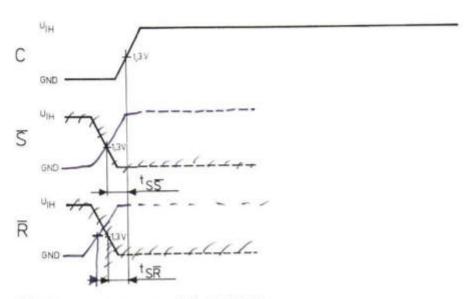


Bild B: impulsdiagramm U 74 HCT 74 DK

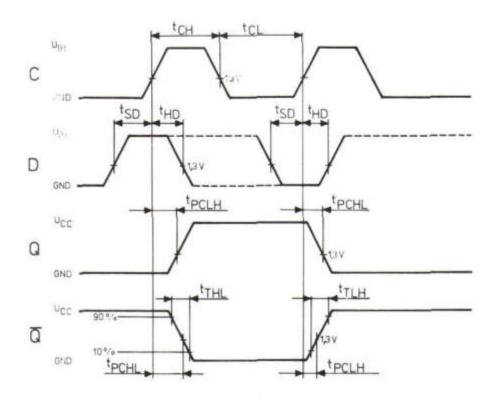


Bild 9: Impulsdiagramm U 74 HCT 74 DK

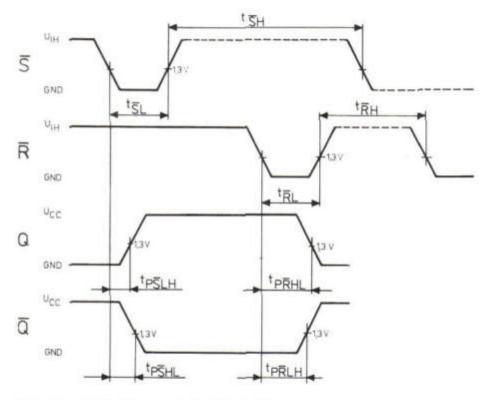


Bild 10: Impulsdiagramm U 74 HCT 74 DK

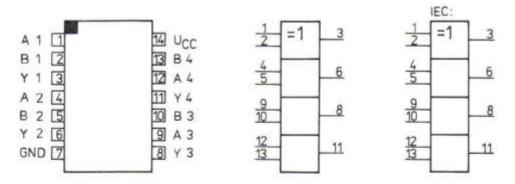


Bild 11: Anschlußbelegung und Schaltzeichen U 74 HCT B6 DK (Bauform: 1)

Bezeichnung der Anschlüsse:

1	A I	Eingang	8	Y 3	Ausgang
2	B 1	Eingang	9	A 3	Eingang
3	Y 1	Ausgang	10	B 3	Eingang
4	A 2	Eingang	11	Y 4	Ausgang
5	8 2	Eingang	12	A 4	Eingang
6	Y 2	Ausgang	13	B 4	Eingang
7	GND	Bezugspotential	14	ucc	Betriebsspannung

Wahrheitstabelle:

A n	B n	Υn
L	L	L
Н	L	н
L H	н	Н
H	Н	L

(n = 1 ... 4)

Grenzwerte

Kennwert	Kurzzeichen		min.	max.	Einheit
Betriebsspannung	UCC		GND - 0,5	GND + 7	v
Eingangsspannung	UT		GND - 0,5	Upp + 0,5	V
Ausgangsspannung	Un.		GNO - 0,5	U _{CC} + 0,5	V
Eingangsstrom	IT			20	mA
Ausgangsstrom	I ₀			25	mA
Betriebsstrom	I _{CC} ; I _{GND}			50	mA
Gesamtverlustleistung	Ptot	J = -40 70 °C		350	.mW
(DIP-Gehäuse)		θa = 85 °C		250	mW
Lagerungstemperaturbereich	Stg		-55	125	*C

Kennwert	Kurzzeichen	min.	max.	Einheit
Betriebsspannung	ucc	4,5	5,5	V
Eingangsspannung	UT	0	ucc	V
Eingangsspannung H	UIH	2		V
Eingangsspannung L	u _{IL}		0,8	V
Betriebstemperaturbereich	of a	-40	85	*C
Anstiegs- und Abfallzeit der Eingangssignale	t _{LH} ; t _{HL}		500	res

Statische Kennwerte ($\mathfrak{J}_{\mathbf{B}}^{r}$ = -40 ... 85 °C)

Kennwert	Kurz- zeichen	Meßbedingungen	min.	max.	Einheit
Eingangsreststrom	IIH	U _{CC} = U _{IH} = 5,5 V		1	μА
	-I _{IL}	U _{CC} = 5,5 V; U _{TL} = 0 V		1	μА
Ausgangsspannung H	UDH	$U_{CC} = 4,5 \text{ V}; U_{IL} = 0,8 \text{ V};$ $U_{TH} = 2 \text{ V}; -I_{OH} = 20 \text{ pA}$	4,4		v
		U _{CC} = 4,5 V; U _{IL} = 0,8 V; U _{TH} = 2 V; -I _{OH} = 4 mA	3,84		V
Ausgangsspannung L	UDL	U _{CC} = 4,5 V; U _{IL} = 0,8 V; U _{TH} = 2 V; I _{OI} = 20 µA		0,1	V
		UCC = 4,5 V; UIL = 0,8 V;		0,33	ν
statische Stromaufnahme	ICC	$U_{IH} = 2 \text{ V; } I_{OL} = 4 \text{ mA}$ $U_{CC} = U_{IH} = 5,5 \text{ V; } U_{IL} = 0 \text{ V;}$ $I_{O} = 0 \text{ mA}$		20	μА

$$(U_{CC} = 4,5 \text{ V}; U_{IH} = 3 \text{ V}; U_{IL} = 0 \text{ V}; t_{LH} = t_{HL} = 6 \text{ ns}; C_{L} = 50 \text{ pF}; 3/8 = -40 ... 85 °C)$$

Kennwert	Kurzzeichen	Meßbedingungen	min.	max.	Einheit
Verzägerungszeit Anstiegs- und Abfallzeit	t _{PLH} ; t _{PHL} t _{TLH} ; t _{THL}			40 19	ns ns
Eingangskapazität	c _I	ϑ _a = 25 °C		10	pF

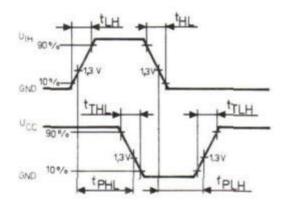


Bild 12: Impulsdiagramm U 74 HCT 86 DK

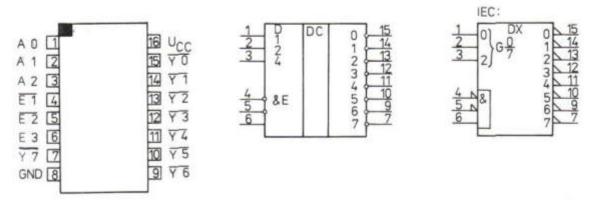


Bild 13: Anschlußbelegung und Schaltzeichen U 74 HCT 138 DK (Bauform: 2)

Bezeichnung der Anschlüsse:

1	A 0	Eingang	7	¥ 7	Ausgang	12	Y 3	Ausgang
2	A 1	Eingang	8	GND	Bezugs-	13	Y 2	Ausgang
3	A 2	Eingang			potential	14	YI	Ausgang
4	EI	Steuereingang Freigabe/Auswahl	9	Y 6	Ausgang	15	Y O	Ausgang
5	E 2	Steuereingang Freigabe/Auswahl	10	Y 5	Ausgang	16	UCC	Betriebs-
6	E 3	Steuereingang Freigabe/Auswahl	11	Y 4	Ausgang		L L	spannung

Der U 74 HCT 138 DK enthält einen 1 aus 8 Dekoder, wobei die BCD-Information an den Eingängen A O ... A 2 bestimmt, welcher Ausgang ausgewählt ist und L-Pegel einnimmt. Die nichtausgewählten Ausgänge zeigen H-Pegel.

Diese Dekodierung erfolgt bei H-Pegel an E 3 und L-Potential an \overline{E} 1 und \overline{E} 2. Für andere Belegungen der Steuereingänge Freigabe/Auswahl \overline{E} 1, \overline{E} 2 und E 3 nehmen die Ausgänge unabhängig von der Eingangsinformation an A 0 ... A 2 den Zustand H ein.

Der U 74 HCT 138 DK kann als Demultiplexer eingesetzt werden.

Wahrheitstabelle:

Steue	ereing gabe/A	ange uswahl	Eingi	inge		Ausg	ange						
ΕI	E Z	E 3	A 0	A 1	A 2	YO	Y 1	<u>Y 2</u>	Y 3	Y 4	Y 5	Y 6	Y 7
×	×	L	x	×	×	Н	н	н	н	н	н	н	н
×	H	×	×	×	×	Н	H	H	н	н	н	н	Н
Н	×	×	×	×	×	H	Н	Н	H	H	н	н	Н
L	L	H	L	L	L	L	H	н	H	н	н	H	Н
L	L	H	H	1_	L	Н	L	H	H	н	н	Н	Н
L	L	H	L	Н	L	Н	Н	L	Н	н	н	Н	Н
L	L	H	H	н	L	Н	Н	H	L	Н	Н	H	Н
L	L	H	L	L	H	Н	H	н	H	L	н	H	H
L	L	H	н	L	H	Н	H	H	H.	H	L	H	Н
L	L	H	L	H	н	Н	H	Н	H	н	Н	L	н
L	L	H	н	H	H	Н	H	H	H	Н	н	Н	1.

x = L oder H

Grenzwerte

Kennwert	Kurzzeichen		min.	max.	Einheit
Betriebsspannung	u _{cc}		GNO - 0,5	GND + 7	v
Eingangsspannung	UT		GND - 0,5	Upp + 0,5	V
Ausgangsspannung	u _n		GND - 0,5	U _{CC} + 0,5	V
Eingangsstrom	IIT			20	mA
Ausgangsstrom	ID			25	mA
Betriebsstrom	I _{CC} ; I _{GND}			50	mA
Gesamtverlustleistung	P _{tot}	ϑ _a = -40 70 °C		350	mW
(DIP-Gehäuse)	LUL.	θ _a = 85 °C		250	mlel
Lagerungstemperaturbereich	∂rstg		-55	125	*C

Betriebsbedingungen (GND = 0 V)

Kennwert	Kurzzeichen	min.	max.	Einheit
Betriebsspannung	ucc	4,5	5,5	v
Eingangsspannung	UT	0	ucc	V
Eingangsspannung H	U _{IH}	2		V
Eingangsspannung L	un		0,8	V
Betriebstemperaturbereich	Ja	-40	85	*c
Anstiegs- und Abfallzeit der Eingangssignale	t _{LH} ; t _{HL}		500	ns

Statische Kennwerte ($\hat{\mathcal{J}}_{g}$ = -40 ... 85 °C)

Kennwert	Kurz- zeichen	Meßbedingungen	min.	mex.	Einheit
Eingangsreststrom	I _{IH}	U _{CC} = U _{IH} = 5,5 V		1	μΑ
	-I _{IL}	U _{CC} = 5,5 V; U _{TL} = 0 V		1	μA
Ausgangsspannung H	u _{OH}	$U_{CC} = 4,5 \text{ V}; U_{IL} = 0,8 \text{ V};$ $U_{IH} = 2 \text{ V}; -I_{OH} = 20 \mu\text{A}$	4,4		μA V
		$U_{CC} = 4,5 \text{ V; } U_{IL} = 0,8 \text{ V;}$ $U_{TH} = 2 \text{ V; } -I_{CH} = 4 \text{ mA}$	3,84		٧
Ausgangsspannung L	UOL	$U_{CC} = 4,5 \text{ V}; \ U_{IL} = 0,8 \text{ V}; \ U_{TH} = 2 \text{ V}; \ I_{OI} = 20 \mu\text{A}$		0,1	٧
		U _{CC} = 4,5 V; U _{IL} = 0,8 V; U _{TH} = 2 V; I _{OI} = 4 mA		0,33	v
statische Stromaufnahme	Icc	$U_{CC} = U_{IH} = 5,5 \text{ V}; U_{IL} = 0 \text{ V};$ $I_{D} = 0 \text{ mA}$		20	μА

$$(U_{CC} = 4.5 \text{ V}; U_{IH} = 3 \text{ V}; U_{IL} = 0 \text{ V}; t_{HL} = t_{LH} = 6 \text{ ns}; C_{L} = 50 \text{ pF}; \frac{37}{28} = -40 \dots 85 \text{ °C})$$

Kennwert	Kurzzeichen	Meßbedingungen	min.	max.	Einheit
Verzögerungszeit A n → Ÿ m	t _{PALH} ; t _{PAHL}			44	ns
Verzögerungszeit E 1, E 2, E 3 → Y m	tpelhi tpehl tpelhi tpehl			50	ns
Anstiegs- und Abfallzeit	t _{TLH} ; t _{THL}			19	ns
Eingangskapazität	C _I	∂ = 25 °C		10	pF

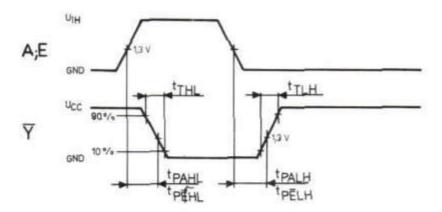


Bild 14: Impulsdiagramm U 74 HCT 138 DK

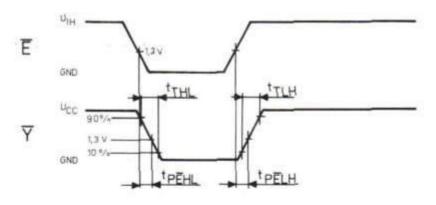


Bild 15: Impulsdiagramm U 74 HCT 138 DK

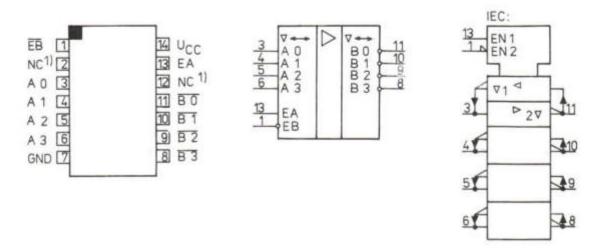


Bild 16: Anschlußbelegung und Schaltzeichen U 74 HCT 242 DK (Bauform: 1)

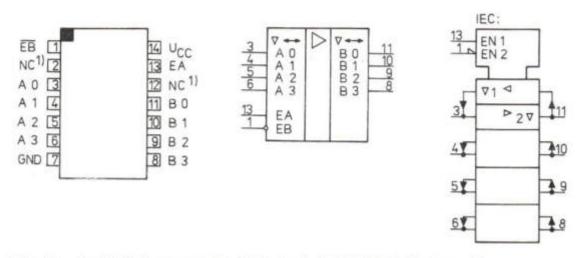


Bild 17: Anschlußbelegung und Schaltzeichen U 74 HCT 243 DK (Bauform: 1)

Bez	eichnur	ng der Anschlüsse:			
1	EB	Steuereingang Freigabe	8	B 3/B 3	Datenein- bzwausgang
		Ausgang Kanal B	9	B 2/B 2	Datenein- bzwausgang
2	NC	nicht angeschlossen	10	8 1/8 1	Datenein- bzwausgang
3	A D	Datenein- bzwausgang	11	B 0/8 0	Datenein- bzwausgang
4	A 1	Datenein- bzwausgang	12	NC	nicht angeschlossen
5	A 2	Datenein- bzwausgang	13	EA	Steuereingang Freigabe
6	A 3	Datenein- bzwausgang	*(*)	N-71	Ausgang Kanal A
7	GND	Bezugspotential	14	UCC	Betriebsspannung

1) Der Anschluß kann mit Potentialen von 0 V \leq U \leq 7 V belegt werden.

Der U 74 HCT 242 DK bzw. U 74 HCT 243 DK enthält invertierende bzw. nicht invertierende Transceiver für asynchronen bidirektionalen Datentransfer zwischen 4bit-Bussen.

Er verfügt über die Steuereingänge EA und $\overline{\text{EB}}$. Bei H-Pegel an EA werden die Ausgänge A n freigegeben. Bei L-Pegel an $\overline{\text{EB}}$ werden beim U 74 HCT 242 DK die Ausgänge $\overline{\text{B}}$ n, beim U 74 HCT 243 DK die Ausgänge B n freigegeben.

Wahrheitstabelle:

Steue	reingänge	U 74 HCT 24	2 DK	U 74 HCT 24	3 DK
EA	EB	A n	8 n	A n	B n
н	н	Ausgang	Eingang	Ausgang	Eingang
		Н	L	H	Н
	100	L	Н	L -	L
L	H	hachahmig	hachahmig	hochohmig	hochohmig
H	L	hochohmig	hochohmig	hochohmig	hochohmig
L	L	Eingang	Ausgang	Eingang	Ausgang
		Н	L	Н	Н
		L	Н	L	L

(n = 0 ... 3)

Grenzwerte

Kennwert	Kurzzeichen		min.	max.	Einheit
Betriebsspannung	u _{cc}		GNO - 0,5	GND + 7	- v
Eingangsspannung	UT		GND - 0,5	U _{CC} + 0,5	V
Ausgangsspannung	u ₀		GND - 0,5	U _{CC} + 0,5	V
Eingangsstrom	IIT			20	mA
Ausgangsstrom	1101			25	mA
Betriebsstrom	I _{CC} ; I _{GND}			50	mA
Gesamtverlustleistung	Ptot	Ĵ _a = -40 70 °C		350	mW
(DIP-Gehäuse)	11.85377	∜ _a = 85 °C		250	mW
Lagerungstemperaturbereich	J _{stg}		-55	125	*c

Kennwert	Kurzzeichen	min.	max.	Einheit
Betriebsspannung	UCC	4,5	5,5	v
Eingangsspannung	U _T	0	Ucc	V
Eingangsspannung H	U _{TH}	2	5.5	V
Eingangsspannung L	UIL		0,8	V
Betriebstempersturbereich	9	-40	85	°C
Anstiegs- und Abfallzeit der Eingangssignale	t _{LH} ; t _{HL}		500	ns

Statische Kennwerte (ϑ_{g} = -40 ... 85 °C)

Kennwert	Kurz- zeichen	Meßbedingungen	min.	max.	Einhei
Eingangsreststrom	I _{IH}	U _{CC} = U _{TH} = 5,5 V		1	μA
	-I _{IL}	U _{CC} = 5,5 V; U _{TL} = 0 V		1	μA
Ausgangsspannung H	ПОН	$U_{CC} = 4.5 \text{ V; } U_{TL} = 0.8 \text{ V;}$ $U_{TH} = 2 \text{ V; } -I_{OH} = 20 \text{ µA}$	4,4		V.
		$U_{CC} = 4,5 \text{ V}; \ U_{TL} = 0,8 \text{ V}; \ U_{TH} = 2 \text{ V}; -I_{OH} = 6 \text{ mA}$	3,84		V
Ausgangsspannung L	u _{OL}	U _{CC} = 4,5 V; U _{IL} = 0,8 V; U _{TH} = 2 V; I _{CR} = 20 μA		0,1	V
		U _{CC} = 4,5 V; U _{IL} = 0,8 V;		0,33	V
statische Stromaufnahme	ICC	$U_{IH} = 2 \text{ V}; I_{OL} = 6 \text{ mA}$ $U_{CC} = U_{IH} = 5,5 \text{ V}; U_{IL} = 0 \text{ V};$ $I_{O} = 0 \text{ mA}$		8 0	μΑ
Reststrom der tristate- Ausgänge im hochohmigen Zustand bzw. Aus-/Eingänge	I _{ZH}	U _{CC} = U _{IH} = 5,5 V; U _{IL} = 0 V; U _D = 5,5 V		5	μА
im Zustand Eingabe	I _{ZL}	U _{CC} = U _{IH} = 5,5 V; U _{IL} = 0 V; U _D = 0 V		5	μΑ

Dynamische Kennwerte

 $(U_{CC} = 4,5 \text{ V}; U_{IH} = 3 \text{ V}; U_{IL} = 0 \text{ V}; t_{LH} = t_{HL} = 6 \text{ ns}; C_{L} = 50 \text{ pF}; 3/a = -40 ... 85 °C)$

Kennwert	Kurzzeichen	MeGbedingungen	min.	max.	Einheit
Verzögerungszeit	t _{PLH} ; t _{PHL}			38	ns
(U 74 HCT 242 DK) Verzögerungszeit (U 74 HCT 243 DK)	t _{PLH} ; t _{PHL}			34	ns
Selektionszel. hachahmig — H, L	t _{PZH} ; t _P [7]			56	ns
Deselektionszeit H, L → hochormig	t _{PHZ} ; t _{PM}			56	ns
Anstiegs- und Abfallzeit	t _{TLH} ; t _{THL}		1	15	ns
Eingangskapazität	c _I	∂ = 25 °C	1 1	10	pF
Kapazität der Ein-/Ausgänge	C ¹⁰	∂a = 25 °C		20	pF pF

W 87

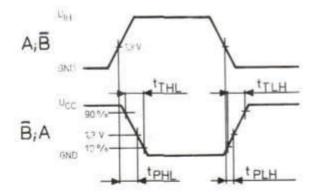


Bild 18: Impulsdiagramm U 74 HCT 242 DK

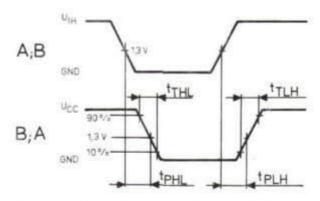


Bild 19: Impulsdiagramm U 74 HCT 243 DK

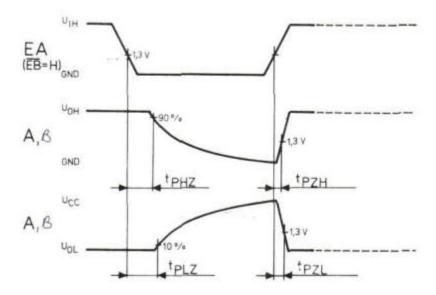


Bild 20: Impulsdiagramm U 74 HCT 242 DK/U 74 HCT 243 DK

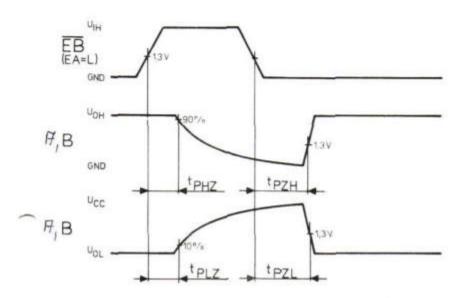


Bild 21: Impulsdiagramm U 74 HCT 242 DK/U 74 HCT 243 DK

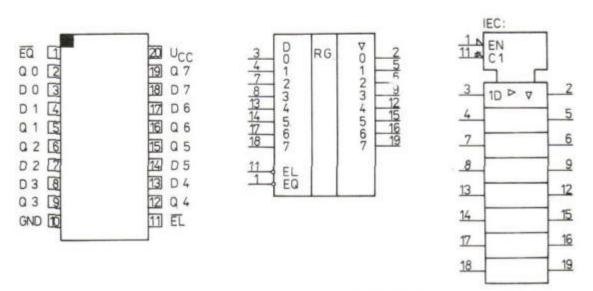


Bild 22: Anschlußbelegung und Schaltzeichen U 74 HCT 373 DK (Bauform: 3)

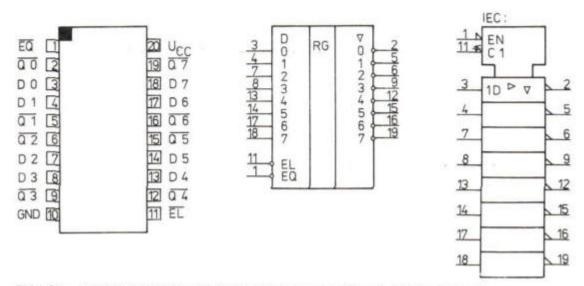


Bild 23: Anschlußbelegung und Schaltzeichen U 74 HCT 533 DK (Bauform: 3)

Beze	ichnung der	Anschlüsse:			
1	EQ	Steuereingang Freigabe der Ausgänge	11	ĒĽ	Steuereingang Zwischen- speicher aktiv
2	0 0/0 0	Ausgang	12	0 4/0 4	Ausgang
3	0 0	Dateneingang	13	D 4	Dateneingang
4	0 1	Dateneingang	14	D 5	Dateneingang
5	Q 1/Q 1	Ausgang	15	Q 5/Q 5	Ausgang
6	Q 2/Q 2	Ausgang	16	Q 6/Q 6	Ausgang
7	D 2	Dateneingang	17	0.6	Dateneingang
В	D 3	Dateneingang	18	D 7	Dateneingang
9	Q 3/Q 3	Ausgang	19	Q 7/Q 7	Ausgang
10	GND	Bezugspotential	20	ucc	Betriebsspannung

Die Schaltkreise U 74 HCT 373 DK und U 74 HCT 533 DK enthalten 8 Zwischenspeicher, die von einem gemeinsamen Steuereingang EL geladen werden. Die Information an den Dateneingängen D 0 ... D 7 wird bei H-Pegel an EL an die Ausgänge Q 0 ... Q 7 (U 74 HCT 373 DK) bzw. negiert an die Ausgänge Q 0 ... Q 7 (U 74 HCT 373 DK) bzw. negiert an die Ausgänge Q 0 ... Q 7 (U 74 HCT 533 DK) gegeben. Die Ausgänge folgen den Eingängen solange, bis die H/L-Flanke am Steuereingang EL erreicht ist. Ab dieser Flanke bis zur M/H-Flanke von EL bleibt I--/ L/H die Information zwischengespeichert (Latch). Der Eingang EQ dient zur Steuerung der tristate-Ausgänge. Bei H-Pegel an EQ befinden sich die Ausgänge im hochohmigen Zustand.

Wahrheitstabelle:

Eingänge			Ausgänge U 74 HCT 373 BK	Ausgänge U 74 HCT 533 D		
EQ	EL	Dn	Q n	Q n		
L	н	н	Н	L,		
L	H	L	L'	L		
L	L	×	Latch	Latch		
H.	×	×	hochohmig	hochohmig		

x = L oder H

n = 0 ... 7

Grenzwerte

Kennwert	Kurzzeichen		min.	max.	Einheit
Betriebsspannung	ucc		GND - 0,5	GND + 7	V
Eingangsspannung	UT		GND - 0,5	Upp + 0,5	V
Ausgangsspannung	u _n		GND - 0,5	U _{CC} + 0,5	V:
Eingangsstrom	111			20	mA
Ausgangsstrom	I ₀			25	mA
Betriebsstrom	I _{CC} ; I _{GND}			50	mA
Gesamtverlustleistung	Ptot	√ = -40 70 °C		350	mid
(DIP-Gehäuse)		⊕ = 85 °C		250	πW
Lagerungstemperaturbereich	ਐ _{stg}	300	-55	125	*C

Kennwert	Kurzzeichen		min.	max.	Einheit
Betriebsspannung	ucc		4,5	5,5	v
Eingangsspannung	UT		0	UCC	V
Eingangsspannung H	UIH		0 2		V
Eingangsspannung L				0,8	V
Betriebstemperaturbereich	UIL Sa		-40	85	*C
Anstiegs- und Abfallzeit der Eingangssignale	t _{LH} ; t _{HL}			500	ns
Setzzeit Daten zu H/L-Flanke EL	t _S	U _{DC} = 4,5 V	15		ns
Haltezeit Daten nach H/L-Flanke EL	t _H	U _{CC} = 4,5 V	10		n ś
H-Impulsbreite EL	t _{ELH}	U _{CC} = 4,5 V	20		ns

Statische Kennwerte ($\vartheta_{\rm g}$ = -40 ,... 85 °C)

Kennwert	Kurz- zeichen	MeBbedingungen	min.	max.	Einhei
Eingangsreststrom	IIH	U _{CC} = U _{IH} = 5,5 V		1	Į.A
	-I _{IL}	U _{CC} = 5,5 V; U _{IL} = 0 V		1	11A
Ausgangsspannung H	u _{он}	$U_{CC} = 4,5 \text{ V}; U_{IL} = 0,8 \text{ V};$ $U_{TH} = 2 \text{ V}; -I_{OH} = 20 \text{ µA}$	4,4		V
	1	$U_{CC} = 4,5 \text{ V}; \ U_{IL} = 0,8 \text{ V}; \ U_{TH} = 2 \text{ V}; \ -I_{OH} = 6 \text{ mA}$	3,84		V
Ausgangsspannung L	UDL	U _{CC} = 4,5 V; U _{IL} = 0,8 V; U _{IH} = 2 V; I _{OL} = 20 µA		0,1	V
		$U_{CC} = 4.5 \text{ V}; U_{IL} = 0.8 \text{ V};$ $U_{IH} = 2 \text{ V}; I_{OL} = 4 \text{ mA}$		0,33	V
statische Stromaufnahme	ICC	$U_{CC} = U_{IH} = 5,5 \text{ V; } U_{IL} = 0 \text{ V;}$ $I_{D} = 0 \text{ mA}$		80	μА
Reststrom der tristate- Ausgänge im hochohmigen Zustand	IZH	U _{CC} = U _{IH} = 5,5 V; U _{IL} = 0 V; U _O = 5,5 V		5	шА
and the state of the	I _{ZL}	$U_{CC} = U_{IH} = 5,5 \text{ V; } U_{IL} = 0 \text{ V;}$ $U_{C} = 0 \text{ V}$		5	µА

Dynamische Kennwerte (U_{CC} = 4,5 V; U_{IH} = 3 V; U_{IL} = 0 V; t_{LH} = t_{HL} = 6 ns; C_L = 50 pF; \mathcal{G}_a = -40 ... 85 °C)

Kennwert	Kurzzeichen	Meßbedingungen	Тур	min.	max.	Einheit
Verzögerungszeit D → Q	t _{POHL} ; t _{POLH}		U 74 HCT 373 DK		44	ns
Verzögerungszeit D → Q H/L-Flanke	t _{POHL}		U 74 HCT 533 DK		43	ns
Verzögerungszeit D → Q L/H-Flanke	^t PDLH	75.5	U 74 HCT 533 DK		46	ns
Verzögerungszeit EL → Q	tpELHL; tpELLH		U 74 HCT 373 DK		44	ns
Verzögerungszeit EL → Q H/L-Flanke	t _{PELHL}		U 74 HCT 533 DK		60	ns
Verzögerungszeit EC → Q L/H-Flanke	t _{PELLH}		U 74 HCT 533 DK		50	ns
Selektionszeit hochohmig → H, L	t _{PZH} ; t _{PZL}		U 74 HCT 373 DK		44	rs
Selektionszeit hochohmig → H	t _{PZH}		U 74 HCT 533 DK		40	ns
Selektionszeit hochohmig → L	t _{PZŁ}		U 74 HCT 533 DK		49	ns
Deselektionszeit L,H → hochohmig	t _{PHZ} ; t _{PLZ}		U 74 HCT 373 DK		44	ns
Deselektionszeit H → hochohmig	t _{PHZ}		U 74 HCT 533 DK		41	ns
Deselektionszeit L → hochohmig	t _{PLZ}		U 74 HCT 533 DK		45	ns
Anstiegs- und Abfallzeit	t _{TLH} ; t _{THL}				15	ns
Eingangskapazität	c _I	ਤੇ ₉ = 25 °C			10	pF
Ausgangskapazität	c_0	ਹੈ = 29 °C			20	DF

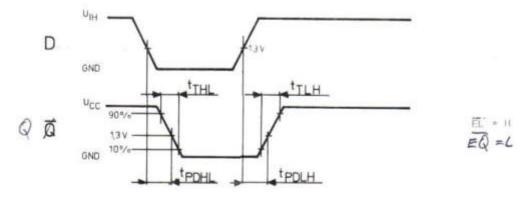


Bild 24: Impulsdiagramm U 74 HCT 373 DK

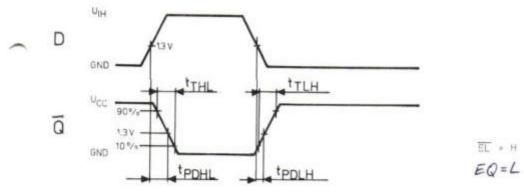


Bild 25: Tmpulsdiagramm U 74 HCT 533 DK

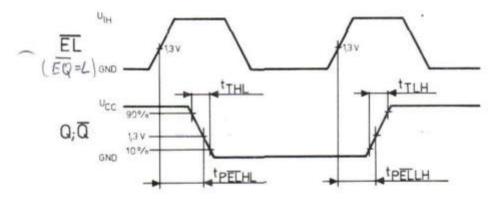


Bild 26: Impulsdiagramm U 74 HCT 373 DK/U 74 HCT 533 DK

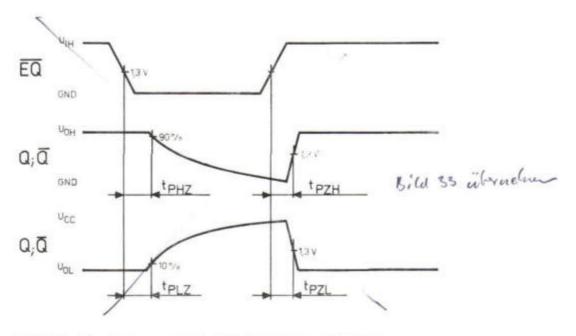


Bild 27: Impulsdiagramm U 74 HCT 373 DK/U 74 HCT 533 DK

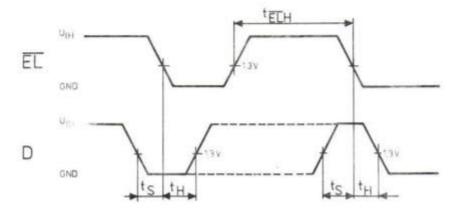
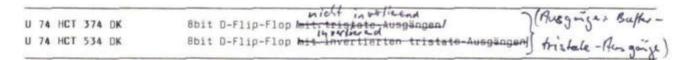



Bild 28: Impulsdiagramm U 74 HCT 373 DK/U 74 HCT 533 DK

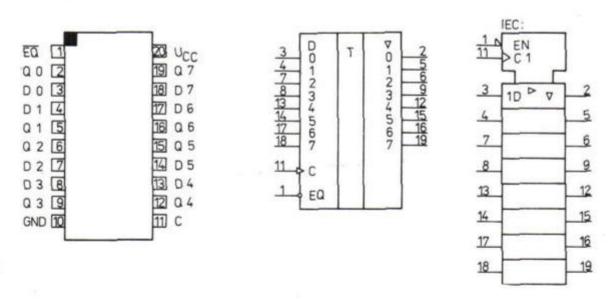


Bild 29: Anschlußbelegung und Schaltzeichen U 74 HCT 374 DK (Bauform: 3)

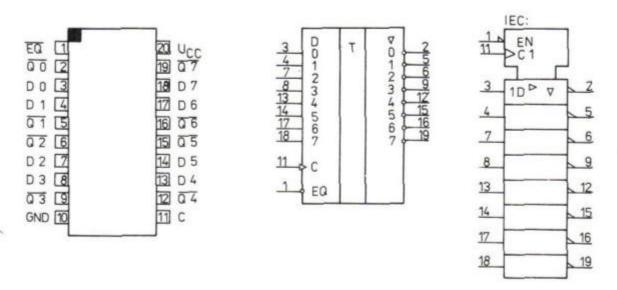


Bild 30: Anschlußbelegung und Schaltzeichen U 74 HCT 534 DK (Bauform: 3)

Beze	ichnung der	Anschlüsse:			
1	EQ	Steuereingang Freigabe der Ausgänge	11	C	Takteingang
2	Q 0/Q 0	Ausgang	12	Q 4/Q 4	Ausgang
3	D 0	Dateneingang	13	D 4	Dateneingang
4	D 1	Dateneingang	14	D 5	Dateneingang
5	Q 1/Q 1	Ausgang	15	0 5/0 5	Ausgang
6	Q 2/Q 2	Ausgang	16	Q 6/Q 6	Ausgang
7	D 2	Dateneingang	17	D 6	Dateneingang
В	D 3	Dateneingang	18	D 7	Dateneingang
9	Q 3/Q 3	Ausgang	19	0 7/0 7	Ausgang
10	GND	Bezugspotential	20	ucc	Betriebsspannung

Die Schaltkreise U 74 HCT 374 DK und U 74 HCT 534 DK enthalten B Flip-Flops mit einem gemeinsamen Takteingang C. Die an den Gateneingängen D 0 ... D 7 anliegende Information wird mit der L/H-Flanke des Taktes in die Flip-Flops übernommen. Sie erscheint an den Ausgängen Q 0 ... Q 7 (U 74 HCT 374 DK) bzw. \overline{Q} 0 ... \overline{Q} 7 (U 74 HCT 534 DK), falls am Steuereingang Freigabe der Ausgänge \overline{EQ} L-Pegel anliegt. Für \overline{EQ} = H befinden sich die Ausgänge im hochohmigen Zustand.

Wahrheitstabelle:

Eingänge C Dn EQ		EQ	Ausgänge U 74 HC7 374 DK Q n	Ausgänge U 74 HCT 534 DK		
L/H-Flanke	L	L	L	н		
L/H-Flanke	H	L	н	L		
×	×	H	hochohmig	hochohmig		

n = 0 ... 7 x = L oder H

Grenzwerte

Kennwert	Kurzzeichen		min.	max.	Einheit
Betriebsspannung	UCC		DND - 0,5	GNO + 7	v
Eingangsspannung	U		GND - 0,5	U _{CC} + 0,5	V
Ausgangsspannung	U _D		GND - 0,5	U _{CC} + 0,5	V
Eingangsstrom	I ₁			20	mA
Ausgangsstrom	1101			25	mA,
Betriebsstcom	I _{CC} ; I _{GNO}			50	mA
Gesamtverlustleistung	Ptot	₹ = -40 70 °E		350	mild
(DIP-Gehäuse)	350.5	∂° = 85 °C		250	mW
Lagerungstømperaturbereich	-O _{stg}	200	-55	125	*C

Kennwert	Kurzzeichen		min.	max.	Einheit
Betriebsspannung	UCC		4,5	5,5	v
Eingangsspannung	UT		0	n ^{CC}	V
Eingangsspannung H	n ^{IH}		2		V
Eingangsspannung L	UTL			0,8	V
Betriebstemperaturbereich	T _a		-40	85	"C
Anstiegs- und Abfallzeit der Eingangssignale	TLHI THL			500	ns
Setzzeit Daten zur L/H-Flanke des Taktes	t _{SD}	U _{CC} = 4,5 V	25		ns
Haltezeit Daten nach L/H-Flanke des Taktes	t _{HD}	U _{CC} = 4,5 V	5		ns
Impulsbreite des Taktes (U 74 HCT 374 DK)	t _{CL} ; t _{DH}	U _{CC} = 4,5 V	28		ns
Impulsbreite des Taktes (U 74 HCT 534 DK)	t _{CL} ; t _{CH}	U _{CC} = 4,5 V	31		ns
Taktfrequenz	f _C			18	MHz

Statische Kennwerte ($\hat{\mathcal{J}}_{a}$ = -40 ... 85 °C)

Kennwert	Kurz- zeichen	Meßbedingungen	min.	mex.	Einheit
Eingangsreststrom	I _{IH}	U _{CC} = U _{IH} = 5,5 V		1	μА
	-I _{IL}	U _{CC} = 5,5 V; U _{TL} = 0 V		1	µА
Ausgangsspannung H	UDH	$U_{CC} = 4,5 \text{ V; } U_{IL} = 0,8 \text{ V;}$ $U_{IH} = 2 \text{ V; } -I_{OH} = 20 \text{ µA}$	4,4		٧
		$U_{CC} = 4.5 \text{ V; } U_{TL} = 0.8 \text{ V;}$ $U_{TH} = 2 \text{ V; } -I_{OH} = 6 \text{ mA}$	3,84		V
Ausgangsspannung L	UOL	$U_{CC} = 4,5 \text{ V}; \ U_{TL} = 0.8 \text{ V}; \ U_{TH} = 2 \text{ V}; \ I_{DL} = 20 \mu\text{A}$		0,1	V
		$U_{CC} = 4,5 \text{ V}; \ U_{TL} = 0,8 \text{ V}; \ U_{TH} = 2 \text{ V}; \ I_{CL} = 6 \text{ mA}$		0,33	٧
statische Stromaufnahme	ICC	$U_{CC} = U_{IH} = 5,5 \text{ V; } U_{IL} = 0 \text{ V;}$ $I_{\Omega} = 0 \text{ mA}$		80	μА
Reststrom der tristate- Ausgänge im hochohmigen Zustand	I _{ZH}	U _{CC} = U _{IH} = 5,5 V; U _{IL} = 0 V; U _D = 5,5 V		5	μΑ
custano	I _{ZL}	U _{CC} = U _{IH} = 5,5 V; U _{IL} = 0 ; U _D = 0 V		5	μА

Dynamische Kennwerte (
$$U_{CC}$$
 = 4,5 V; U_{IH} = 3 V; U_{IL} = 0 V; t_{HL} = t_{LH} = 6 ns; C_L = 50 pF; \mathcal{J}_8 = -40 ... 85 °C)

Kennwert	·Kurzzeichen	Meßbedingungen	min.	max.	Einheit
Verzögerungszeit C → Q (U 74 HCT 374 DK)	t _{PCLH} ; t _{PCHL}	- M		40	ns
Verzögerungszeit C → Q (U 74 HCT 534 DK)	^t PCLH ^{i t} PCHL			38	ns
Selektionszeit hochohmig → H, L (U 74 HCT 374 DK)	t _{PZH} ; t _{PZL}			40	ns
Selektionszeit hochohmig → H, L (U 74 HCT 534 DK)	^t PZH [‡] ^t PZL			38	ns
Deselektionszeit L, H → hochohmig (U 74 HC1 374 DK)	t _{PLZ} ; t _{PHZ}			43	ns
Deselektionszeit L. H → hochohmig (U 74 HCT 534 DK)	t _{PLZ} ; t _{PHZ}			38	ns
Anstiegs- und Abfallzeit	t _{TLH} ; t _{THL}			15	ns
Eingangskapazität	C _I	∂r _a = 25 °C		10	pF
Ausgangskapazität	C _D	ϑ _a = 25 °C	1 1	20	pF

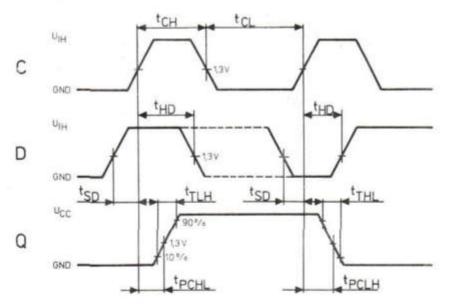


Bild 31: Impulsdiagramm U 74 HUI 374 UK

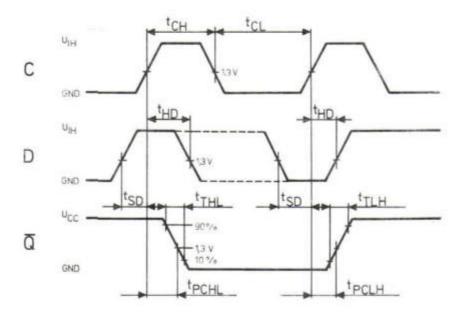


Bild 32: Impulsdiagramm U 74 HCT 534 DK

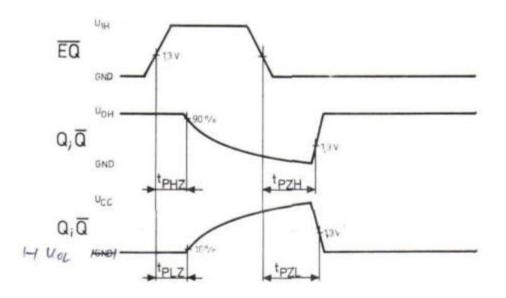


Bild 38: Impulsdiagramm U 74 HCT 374 DK/U 74 HCT 534 DK

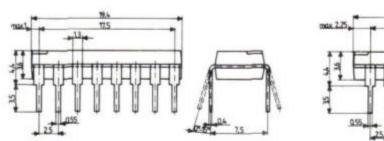


Bild 3∰: Gehäuseabmessungen Bauform 1

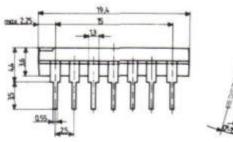


Bild 36: Gehäuseabmessungen Bauform 2

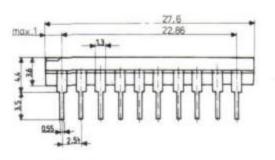


Bild 36: Gehäuseabmessungen Bauform 3

s Datenblatt gibt keine Auskunft über Liefermöglichkeiten und beinhaltet keine Verbindlichn zur Produktion. Die gültigen Vertragsunterlagen beim Bezug der Bauelemente sind die standards. Rechtsverbindlich ist jeweils die Auftragsbestätigung.

ungen im Zuge der technischen Weiterentwicklung vorbehalten.

Behandlungsvorschriften für MOS-Bauelemente müssen unbedingt eingehalten werden, da andern-; eine Reklamation nicht anerkannt werden kann.

12/87

veb mikroelektronik karl marx erfurt stammbetrieb

DDR-5023 Erlurt, Rudolfstraße 47 Telefon 5 80, Telex 061 306

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Telex: BLN 114721 elei, Telefon: 2180