mikroelektronik

Information

U 7650 DD

Chopperstabilisierter CMOS-OPV

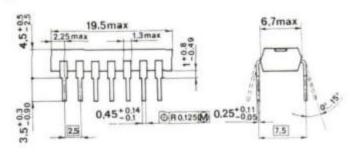
Der U 7650 DD erreicht seine extrem niedrige Offsetspannung durch den Vergleich der Spannungen am invertierenden und nichtinvertierenden Eingang über einen Null-Verstärker. In zwei extern anzuschließenden Kondensatoren wird die Korrekturspannung gespeichert. Eine Klemmschaltung im Rückkopplungsnetzwerk reduziert die Verstärkung des Hauptverstärkers bevor der max. Ausgangspegel erreicht wird. Der U 7650 DD ist intern für eine Verstärkung von 1 kompensiert.

Vorläufige technische Daten

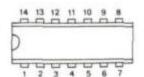
Gehäuse:

14poliges DIL-Plast

Rastermaß: 2.5 mm


Bauform:

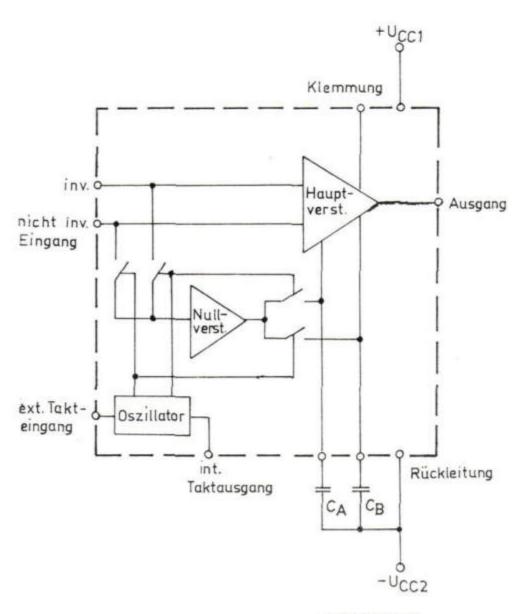
A1 FH nach TGL 26713/02


Reihenabstand: 7.5 mm

Masse:

≤1,5 g

A1FH TGL 26713/02



Anschlußbelegung:

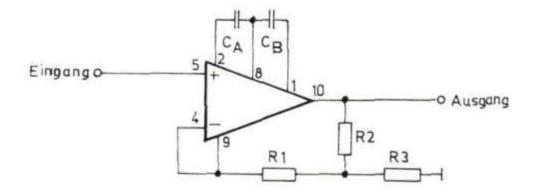
- 1 Anschluß Kondensator CEXT B
- 2 Anschluß Kondensator CEXT A
- 3 NC (Abschirmung)
- 4 invert. Eingang
- 5 nichtinvert. Eingang
- 6 NC (Abschirmung) 7 neg. Betriebsspannung Ucc2

- 8 Rückleitung-Kondensatoren
- 9 Ausgangsklemmung
- 10 Ausgang
- 11 pos. Betriebsspannung Ucc1
- 12 interner Taktausgang
- 13 externer Taktausgang 14 Umschaltung INT/EXT

Blockschaltung:

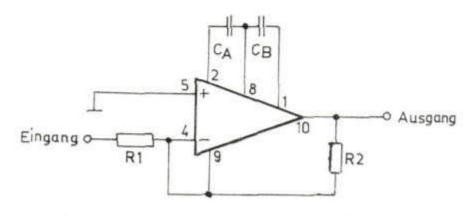
U 7650 A1 188

Grenzwerte:		min.	max.	
pos. Betriebsspannung	U _{CC1}	0	9	٧
neg. Betriebsspannung	-Ucc2	0	9	٧
Takteingangsspannung	Ulch	-U _{CC2}	U _{CC1}	٧
Gleichtakteingangsspannung	U _{IC}	$-(U_{CC3} + 0.3)$	$U_{CC1} + 0.3$	٧
Lagerungstemperatur	T_{stg}	—55	150	$^{\circ}\text{C}$
Sperrschichttemperatur	T_1	_	125	°С
Betriebsbedingungen¹):				
pos. Betriebsspannung	Ucci	2,5	8	٧
neg. Betriebsspannung	-Ucc2	2,5	8	٧
Umgebungstemperatur	T_{α}	—10	+70	°C


 $^{^{1})}$ Die Ströme in jedes Pin (außer U_{CC1} und $U_{CC2})$ sind auf 100 μA zu begrenzen, um Latch-up-Probleme sicher zu unterdrücken.

Kenngrößen, gültig bei $U_{CC}=\pm 5$ V; $T_{\alpha}=25$ °C — 5 K, falls nicht anders angegeben.

		min.	typ.	max.	
Eingangsoffsetspannung	Uio	_	5	20	$V_{\Delta \xi}$
Ausgangsspannungsbereich²) $R_L = 10 \; k\Omega$	Uoss	±4,7	-	_	v
offene Spannungsverstärkung $R_L=100~k\Omega$	Auoff	110	140	_	dB
Gleichtakteingangsspannung $T_a = -10 ^{\circ}\text{C}+70 ^{\circ}\text{C}$	UICM	— 5	-	2,5	٧
Gleichtaktunterdrückung $U_{ic} = -5 \text{ V}+1,6 \text{ V}$	CMR	110	130	_	dB
Betriebsspannungsunterdrückung $U_{CC1}/-U_{CC2} = 3 \ V 8 \ V$	SVR	110	130	_	dB
Eingangsbiasstrom	J _{IB}	_	2	100	pA
Eingangsoffsetstrom	lio	-	1	20	pA
Stromaufnahme ohne Last	lcc	-	1,4	2,0	mA
Taktfrequenz(intern) Pin 12—14 ohne Beschaltung	f_{ch}	-	200	_	Hz


²) Die Ausgangsklemmung wird dabei nicht benutzt.

Nichtinvertierender Verstärker

U7650 A2 188

Invertierender Verstärker

U 7650 A3188

 C_A : $C_B=0.1~\mu F$ bei 200 Hz (int.) $R_3+(R_1IIR_2)$ bzw. R_1IIR_2 ca. 1 $M\Omega$ für optimale Klemmung

Applikationshinweise:

- Der U 7650 DD sollte vorzugsweise als Gleichspannungsverstärker eingesetzt werden.
- Die Verarbeitung von Signalen mit einer Frequenz von größer als 10 kHz ist nicht sinnvoll.
- Für eine optimale Klemmung sind die genannten Bedingungen für R₁ R₃ einzuhalten.
- Bei externer Taktung des Nullverstärkers muß die Amplitude der Taktfrequenz zwischen U_{CCI} und Masse bei ± 5 V Betriebsspannung liegen.
- Die Umschaltung interner auf externer Takt erfolgt durch Anlegen des sonst freien Anschluß
 14 an U_{CC2}.

veb halbleiterwerk frankfurt/oder im veb kombinat mikroelektronik

Telefon 460 - Telex 016252 Postlach 379 - Frankfurt(Oder) - 1200

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen, Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Haus der Elektroindustrie, Telefon; 2180