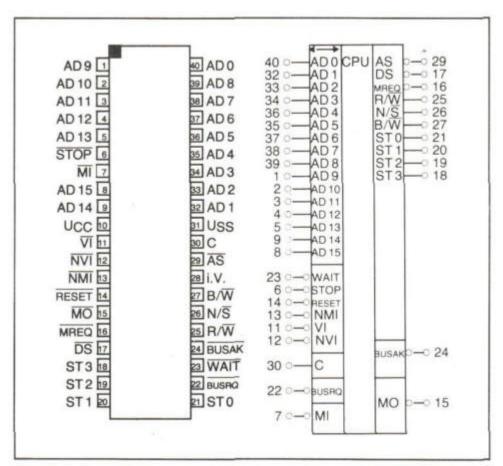


16 bit Mikroprozessoren UB 8001C UB 8002D

Der UB 8001 C/UB 8002 D ist ein leistungsfähiger 16bit-Mikroprozessor, der sowohl in Minimalsystemen der Steuer- und Regeltechnik als auch in Multiprozessorsystemen und Parallelrechnern eingesetzt werden kann. Der 16bit-Mikroprozessor zeichnet sich durch folgende Eigenschaften aus:

- 4 MHz Taktfrequenz
- 8 Adressierungsarten
- 8 Datentypen verarbeitbar
- 110 verschiedene Grundbefehle können zu 414 Einzelbefehlen variiert werden
- 2 Betriebsarten: Systemmodus und Normalmodus
- 3 Interruptarten und 5 Traps
- internes Refreshsteuerungssystem für dynamische Speicher
- Einsatz von Peripherieschaltkreisen des UA 880-Systems (4 MHz) zur Hardwareunterstützung möglich
- Adreßbus:
 - UB 8001 C: 23 bit (16 Adreß- und 7 Segment-


leitungen)

UB 8002 D: 16 bit

 adressierbarer Speicherbereich: UB 8001 C: 8 MByte

UB 8002 D: 64 kByte

Bild 1:-Anschlußbelegung und Schaltungskurzzeichen UB 8001 C

Die Anschlüsse haben folgende Funktion:

AD 0 . . . AD 15 Adreß/Datenbus WAIT, STOP Prozessorsteuerung RESET Rücksetzen NMI, VI, NVI Interrupts SEGT Segmenttrap (nur UB 8001 C) Systemtakt BUSRQ, BUSAK Bussteuerung SN 0 ... SN 6 Segmentnummer (nur UB 8001 C) MO, MI Multi-Mikro-Steuerung AS, DS Buszeitsteuerung MREQ R/\overline{W} , N/\overline{S} , B/\overline{W} , ST 0, Status ST 1, ST 2, ST3

Bild 2: Anschlußbelegung und Schaltungskurzzeichen UB 8002 D

Beschreibung

Der UB 8001 C/UB 8002 D ist ein 16bit-Mikroprozessor, der eine große Vielfalt von Applikationen besitzt.

Die Leistungsfähigkeit seines Befehlssatzes wird vor allem durch einen hohen Grad an Regelmäßigkeit, durch zahlreiche Register, Datentypen und Addressierungsarten erreicht. Ein Befehlsholezyklus von drei Taktperioden ist Grundlage eines hohen Datendurchsatzes des Mikroprozessors mit relativ niedriger Taktfrequenz, wodurch Speicher mit einer vergleichsweise größere Zugriffszeit verwendet werden können.

Der UB 8001 C besitzt einen vielseitigen Registersatz, der aus 16 gleichartigen 16bit-Allzweckregistern (Akku, Index, Stack) besteht und auch Byteund 32bit-Operationen ermöglicht.

Es können 8 Datentypen vom einzelnen bit bis zum Vierfachwort (64 bit) verarbeitet werden. Es existieren 8 Adressierungsarten. Der Mikroprozessor kann im System- oder Normalmodus arbeiten. Dies kann im Zusammenhang mit Speicherschutz die Systemzuverlässigkeit entscheidend erhöhen. Der Systemmodus gestattet die Ausführung privilegierter Befehle.

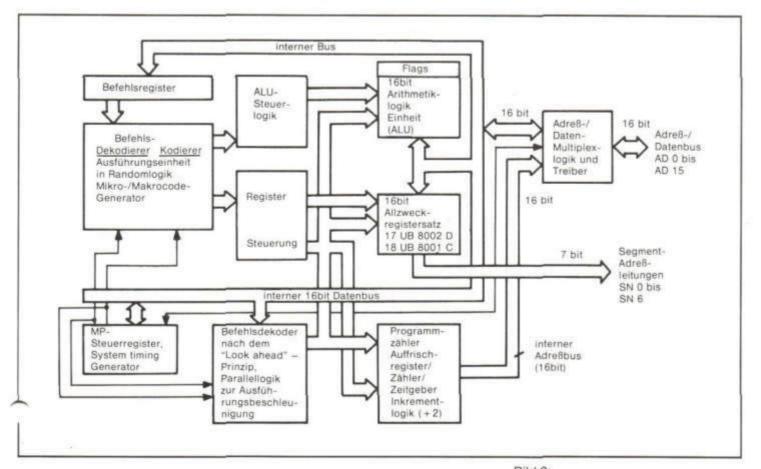
An den Anschlüssen der Prozessoren ist das 8000-Bus-Protokoll realisiert. Es ermöglicht ein leichtes Interface zu Speicher, Peripherie und zu anderen Prozessoren. Alle Anschlüsse sind TTL-kompatibel. Eine fein nivelierte Interruptstruktur mit drei Interruptebenen und 5 Traps ist vorhanden.

Im Steuerregister REFRESH kann das Auffrischen dynamischer Speicher programmiert werden.

Der Schaltkreis wird in zwei Versionen angeboten:

UB 8001 C als 48poliger segmentierter Mikroprozessor,

UB 8002 D als 40poliger nichtsegmentierter Mikroprozessor.


Der Hauptunterschied besteht im Adreßbereich und der Art der Erzeugung der Adressen:

Der UB 8001 C kann direkt 8 MByte Speicher adressieren. Dies geschieht segmentiert.

Der UB 8002 D adressiert direkt 64 kByte. Dies geschieht linear.

Spezielle Befehle und die Systemarchitektur erlauben es, optimal mit Compilern zu arbeiten sowie leistungsfähige Betriebssysteme zu erstellen. Damit wird ein breites Anwendungsfeld gesichert.

Eine ausführliche Funktionsbeschreibung und eine vollständige Befehlsliste liegen in zwei umfangreichen Handbüchern "CPU U 8001 C/U 8002 D – Technische Beschreibung" und CPU 8001 C/U 8002 D – Befehlsbeschreibung" vor.

Grenzwerte (Bezugspotential U_{SS} = 0 V)

Bild 3: Funktionsdarstellung UB 8001 C/UB 8002 D

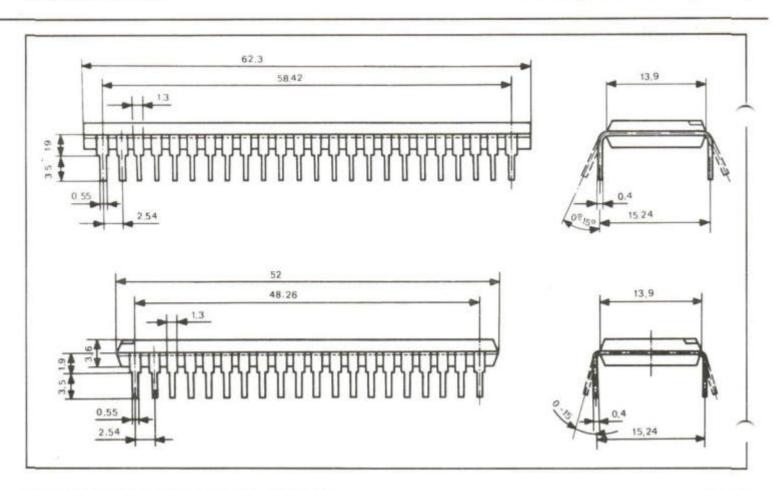
Kennwert	Kurzzeichen	min.	max.	Einheit
Betriebsspannung	Ucc	-0,5	7	V
Eingangsspannung	U ₁	-0,5	7	V
Betriebstemperaturbereich Lagerungstemperaturbereich	θ _a θ _{stg}	-55	70 125	°C

Statische Kennwerte ($U_{SS} = 0 \text{ V}; U_{CC} = 5 \text{ V}$)

	Kennwert	Kurzzeichen	min.	max.	Einheit
	Eingangsspannung Low	U _{II}	-0.5	0,8	V
	Eingangsspannung High	U _{IH}	-0,5 2	U _{CC} + 0,3	V
	Eingangsspannung High am RESET-Anschluß	U _{IHRES}	2,4	U _{CC} + 0,3	V
	Takteingangsspannung Ausgangsspannung Low Ausgangsspannung High Stromaufnahme	U _{ICL}	-0,5	0,45	V
		U _{ICH}	U _{CC} -0,4	Ucc + 0,3	V
		$U_{OL} (I_0 = 2 \text{ mA})$		0,4	V
		$U_{OH} (I_0 = -0.25 \text{ mA})$	2,4		V
		loc	11.12.24	300	mA
	Eingangsreststrom	I _{II}			μА
	Ausgangsreststrom	lou		20 20	μΑ

Dynamische Kennwerte ($\vartheta_a = 0 \dots 70$ °C; $U_{CC} = 5 \text{ V} \pm 0.25 \text{ V}; U_{SS} = 0 \text{ V}$)

Kennwert	Kurzzeichen	min.	max.	Einheit
Taktperiode High-Breite des Taktes Low-Breite des Taktes Anstiegs- und Abfallzeit des Taktes	toc twoH twoL tro; tro	250 105 105	2000 2000 2000 2000 20	ns ns ns ns



veb mikroelektronik karl marx erfurt

DDR-5023 Erfurt, Rudolfstraße 47 Telefon 5 80, Telex 061 306

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Telex: BLN 114721 elei, Telefon: 2180

Dieses Datenblatt gibt keine Auskunft über Liefermöglichkeiten und beinhaltet keine Verbindlichkeiten zur Produktion. Die gültigen Vertragsunterlagen beim Bezug der Bauelemente sind die Typenstandards.

Rechtsverbindlich ist jeweils die Auftragsbestätigung, Änderungen im Zuge der technischen Weiterentwicklung vorbehalten.

Hinweis:

Die Behandlungsvorschriften für MOS-Bauelemente in Dual-in-line-Bauform sind unbedingt einzuhalten, da andernfalls eine Reklamation nicht anerkannt werden kann.

Bild 4: Gehäuseabmessungen